Vacuum Ejector With Solid State Timer
 Series ZMA

Incorporates solid state timer function for release valve control (Timer setting with PLC is unnecessary)

Allows sharing of switch/valve power supply, and single line for suction signal (Valve wiring is unnecessary)

Timer can be easily adjusted without programming (Reduction of the load of PLC)

Series ZMA

4 Precautions

IBe sure to read before handling. Refer to pages 13-15-3 to 13-15-4 for Safety Instructions and Common I Precautions on the products mentioned in this catalog, and refer to page 13-1-5 for Precautions on every series.

Mounting

\triangle Warning

1. Do not drop or bump.

Do not drop, bump or apply excessive impact (1,000 $\mathrm{m} / \mathrm{s}^{2}$) when handling. Even if the switch body is not damaged, the switch may suffer internal damage that will lead to malfunction.
2. Hold the product from the body side when handling. The tensile strength of the power cord is 49 N , and pulling it with a greater force can cause failure.
3. When handling the product, never move or loosen the switch assembly or the switch assembly mounting screws.

Wiring

Warning

1. Do not allow repeated bending or stretching forces to be applied to lead wires.
Wiring arrangements in which repeated bending stress or stretching force is applied to the lead wires can cause broken wires.

Pressure Source

\triangle Warning

1. Vacuum pressure switches

There will be no change in performance if a pressure of approximately 0.5 MPa is applied momentarily (when releasing vacuum), but care should be taken that pressures of 0.2 MPa or more are not applied on a regular basis.

Operating Environment

© Warning

1. The product cannot be used in a strong magnetic field.

Vacuum Ejector
 With Solid State Timer Series ZMA

How to Order

- Electrical entry of vacuum switch (Connector type)

$\mathbf{0 5}$	0.5 mm
$\mathbf{0 7}$	0.7 mm
$\mathbf{1 0}$	1.0 mm
$\mathbf{1 3}$	1.3 mm
$\mathbf{1 5}$	1.5 mm

C	Lead wire length 0.6 m
C	Lead wire length 3 m
CN	No lead wire

* Refer to "Table (2)" for lead wire with 4-wire connecor.

Switch model

T14 1 point setting, No analog output available 3 turns, NPN output
T54 1 point setting, No analog output available 3 turns, PNP output

* Refer to "Table (1)" for selection of standard supply pressure and nozzle diameter.

K \quad With air supply valve, Vacuum release valve

Thread type	
Nil	Rc
T	NPTF
F	G

Table (1)
Combination of Nozzle Diameter and Standard Supply Pressure

Nozzle diameter	Standard supply pressure (MPa)		
	$\mathbf{M}(\mathbf{0 . 3 5})$	$\mathbf{S}(\mathbf{0 . 4 5)}$	$\mathbf{H}(\mathbf{0 . 5})$
$\varnothing 0.5$	-	-	\bullet
$\varnothing 0.7$	\bullet	-	\bullet
$\varnothing 1.0$	\bullet	-	\bullet
$\varnothing 1.3$	\bullet	\bullet	\bullet
$\varnothing 1.5$	-	\bullet	-

Table (2)

Lead wire with 4-wire connector	P5022-6-1 (0.6 m)
	P5022-6-2 (3 m)

Connection Example

T54

VL: Pilot valve for vacuum pressure Vs: Pilot valve for vacuum release

Model

Nozzle diameter (mm)	Model	Standard supply pressure			$\|$Maximum suction flow ate ($/$ /min (ANR) $)$	Air consumption ($(/ / \min (A N R))$	Diffuser construction
		H	M	S			
0.5	ZMA05 \square H	0.5 MPa	-	-	18	12	2nd stage diffuser
0.7	ZMA07口H				24	23	
1.0	ZMA10■H				36	46	
1.3	ZMA13 \square H				40	95	
0.7	ZMA07 \square M	-	0.35 MPa	-	20	16	
1.0	ZMA10 \square M				26	32	
1.3	ZMA13 \square M				36	70	
1.3	ZMA13 \square S	-	-	$0.45 \mathrm{MPa}$	38	75	1st stage diffuser
1.5	ZMA15 \square S				45	90	

Vacuum Ejector Specifications

Fluid	Air
Max. operating pressure	0.7 MPa
Max. vacuum pressure	-84 kPa
Supply pressure range	0.25 to 0.55 MPa
Operating temperature range	5 to $50^{\circ} \mathrm{C}$
Suction filter	Polyethylene sintered metal $(30 \mu \mathrm{~m})$

Valve Specifications

How to operate	Pilot type
Main valve	Poppet
Effective area (Cv factor)	$3 \mathrm{~mm}^{2}(0.17)$
Operating pressure range	0.25 to 0.6 MPa
Electrical entry	Plug connector
Max. operating frequency	5 Hz
Voltage	24 VDC

Vacuum Switch with Timer Specifications (for controlling solenoid valve)

Power source	Operating voltage	24 VDC $\pm 10 \%$
	Consumption current per one unit	1.1 W (at switch output OFF)
Sensor switch output	Number of output	1
	Output	NPN/PNP open collector
	Setting trimmer	3 turns
	Operation indicator light	Red LED lighting
	Temperature characteristics	$\pm 3 \%$ FS or less
Part of timer	Hysteresis	3% FS or less (fixed)
	Timer period	20 to 2,000 ms
	Setting trimmer	3 turns
	Temperature characteristics	$\pm 3 \%$ FS or less

Timing Chart

Note) When power is supplied, release output is performed once for the time period only.

Wiring

Brown	DC (+)
Black	Suction command
White	Switch output
Blue	DC $(-)$

Construction: ZMA $\square 1 \square$-K \square L-E \square

Pilot valve for air supply
Pilot valve for vacuum release

Air supply port

Vacuum port

Component Parts

No.	Description	Material	Note
(1)	Body	Aluminum die-casted	
(2)	Valve cover	Zinc die-casted	
(3)	Adapter plate	Zinc die-casted	
(4)	Cover	Zinc die-casted	ZMA-HCB
(5)	Tension bolt	Stainless steel/Polyacetal	
(6)	Flow adjustment screw	Brass	Electroless nickel plated

Replacement Parts

No.	Description	Material	Part no.
(7)	Filter cover assembly	-	ZMA-FCB-0
(8)	Diffuser assembly	-	ZMA $\square 0 \square-0$
(9)	Suction filter	Polyethylene	ZM-SF
(10)	Silencer assembly	-	ZM-SA
(11)	Pilot valve	-	SY114-5LOZ
(12)	Poppet valve assembly	-	ZM-PV-0
(13)	Vacuum switch with timer	-	ZMA-T14CN (NPN)
(14)	Check valve	NBR	ZMA-T54CN (PNP)
(15)	Connector assembly	-	ZM-CV

Series ZMA

Exhaust Characteristics/Flow Characteristics, Standard Supply Pressure: H...0.5 MPa

ZMA05 \square H

Exhaust Characteristics

Flow Characteristics

ZMA10 \square H

Exhaust Characteristics

Flow Characteristics

ZMA07 \square H

Exhaust Characteristics

Flow Characteristics

ZMA13 \square H
Exhaust Characteristics

Flow Characteristics

Exhaust Characteristics/Flow Characteristics, Standard Supply Pressure: S...0.45 MPa

Exhaust Characteristics/Flow Characteristics, Standard Supply Pressure: M... $\mathbf{0 . 3 5} \mathbf{~ M P a}$

ZM13 \square M
Exhaust Characteristics

ZM10 \square M

Exhaust Characteristics

How to Read Flow Characteristics Graph

Flow characteristics are expressed in ejector vacuum pressure and suction flow. If suction flow rate changes, a change in vacuum pressure will also be expressed. Normally this relationship is expressed in ejector standard use.
In graph, Pmax is max. vacuum pressure and Qmax is max. suction flow. The valves are specified according to catalog use. Changes in vacuum pressure are expressed in the below order.
Changes in vacuum pressure are expressed in the order below.

1. When ejector suction port is covered and made airtight, suction flow is 0 and vacuum pressure is at maximum value (Pmax).
2. When suction port is opened gradually, air can flow through, (air leakage), suction flow increases, but vacuum pressure decreases. (condition P_{1} and Q1)
3. When suction port is opened further, suction flow moves to maximum value (Qmax), but vacuum pressure is near 0 . (atmospheric pressure).
When vacuum port (vacuum piping) has no leakage, vacuum pressure becomes maximum, and vacuum pressure decreases as leakage increases. When leakage value is the same as max. suction flow, vacuum pressure is near 0 . When ventirative or leaky work must be adsorbed, please note that vacuum pressure will not be high.

Series ZMA

Dimensions

Manifold Specifications

Manifold style	Stacking
Common SUP port*	Rc $1 / 4$
Individual SUP port*	Rc $1 / 8$
Common EXH port	Rc $1 / 2,3 / 4$
EXH port location	Right side/Left side/Both sides**
Max. number of stations	Max.10 stations
Silencer	ZZM-SA (With bolts)

* Mixed mounting of common SUP and individual SUP types possible.
**Right or left to the VAC port.
Maximum Ejector Stations (Max. operable nos. simultaneously)

Ejector model Manifold model	$\begin{aligned} & \hline \text { ZM053 } \\ & \text { ZM054 } \end{aligned}$	$\begin{aligned} & \hline \text { ZM073 } \\ & \text { ZM074 } \end{aligned}$	ZM103 ZM104	$\begin{aligned} & \hline \text { ZM133 } \\ & \text { ZM134 } \end{aligned}$
ZZMA Stations - 06 ${ }_{\text {L }}^{\text {R }}$	10	8	5	4
ZZMA Stations- 06B	10	10	8	6
ZZMA Stations - 04 ${ }_{\text {L }}^{R}$	10	8	5	4
ZZMA Stations- 04B	10	10	8	6

* Effective area of external silencer is $160 \mathrm{~mm}^{2}$.

How to Order Ejector Manifold

[^0]
Series ZMA

L	Stations	1	2	3	4	5	6	7	8	9	10
	L1	28 ± 1.5	44 ± 1.5	60 ± 1.5	76 ± 1.5	92 ± 1.5	108 ± 2.0	124 ± 2.0	140 ± 2.0	156 ± 2.0	172 ± 2.0
	L2	40 ± 1.5	56 ± 1.5	72 ± 1.5	88 ± 1.5	104 ± 1.5	120 ± 2.0	136 ± 2.0	152 ± 2.0	168 ± 2.0	184 ± 2.0
	L3	56 ± 1.5	72 ± 1.5	88 ± 1.5	104 ± 1.5	120 ± 1.5	136 ± 2.0	152 ± 2.0	168 ± 2.0	184 ± 2.0	200 ± 2.0

Manifold/With Silencer Manifold with Silencer Dedicated for Manifold
ZZMA Number of ejectors - \mathbf{S} Position of silencer

L Stations	1	2	3	4	5	6	7	8	9	10
L1	28 ± 1.5	44 ± 1.5	60 ± 1.5	76 ± 1.5	92 ± 1.5	108 ± 2.0	124 ± 2.0	140 ± 2.0	156 ± 2.0	172 ± 2.0
L2	40 ± 1.5	56 ± 1.5	72 ± 1.5	88 ± 1.5	104 ± 1.5	120 ± 2.0	136 ± 2.0	152 ± 2.0	168 ± 2.0	184 ± 2.0
L3	72 ± 1.5	88 ± 1.5	104 ± 1.5	120 ± 1.5	136 ± 1.5	152 ± 2.0	168 ± 2.0	184 ± 2.0	200 ± 2.0	216 ± 2.0

[^0]: * Indicate the ejector model no. below the manifold base no.

 Example) Manifold model no.: ZZMA04-SR (1 pc.)
 Ejector model no. : *ZMA073H-K5-T14C (4 pcs.)

