Controller/Driver

LEC $\square / J X C \square$ Series

<Single Axis Controllers>

Step Motor
(Servo/24 VDC)/
LECP6 Series

Programless Type
(With Stroke Study) … Page 583

(Servo/24 VDC)/
LECP2 Series
Specialized for LEM series

Gateway Unit …Page 572

Programless Type • Page 576
Step Motor (Servo/24 VDC)/ LECP1 Series

Pulse Input Type … Page 590

Step Motor (Servo/24 VDC)/ LECPA Series

CC-Link Direct Input Type … Page 600

EtherCAT ${ }^{\oplus} /$ EtherNet/IPTM/PROFINET/DeviceNet ${ }^{\text {TM }} /$ IO-Link Direct Input Type
$J X C \square$ Series
EthercAT.
Etheri'et/IP

Deviceilet
IO-Link

<Multi-Axis Controllers>

EtherNet/IPTM Direct Input Type Page 606-1
For 3 axes JXC92 Series

Parallel I/O/EtherNet/IPTM Direct Input Type Page 606-1

For 4 axes	JXC73 Series JXC83 Series	JXC93 Series Etheri'et/IP

SSMC

Simple Setting to Use Straight Away © Easy Mode for Simple Setting
If you want to use it right away, select "Easy Mode."

Step motor (Servo/24 VDC) LECP6

Servo motor (24 VDC) LECA6

<When a PC is used>

 Controller setting software- Step data setting, test drive, jogging and move for the constant rate can be set and operated on one screen.

<When a TB (teaching box) is used>
- Simple screen without scrolling promotes ease of setting and operating.
- Pick up an icon from the first screen to select a function.
- Set up the step data and check the monitor on the second screen.

Example of setting the step data

It can be registered by "SET" after entering the values.

Example of checking the operation status

Operation status can be checked.

Teaching box screen

- Data can be set with position and speed. (Other conditions are already set.)

Step	Axis 1
Step No.	0
Posn	50.00 mm
Speed	$200 \mathrm{~mm} / \mathrm{s}$

Step	Axis 1
Step No.	1
Posn	80.00 mm
Speed	$100 \mathrm{~mm} / \mathrm{s}$

© Normal Mode for Detailed Setting

Select normal mode when detailed setting is required.

- Step data can be set in detail.
- Parameters can be set.
- Signals and terminal status can be monitored.
- JOG and constant rate movement, return to origin, test drive and testing of forced output can be performed.

<When a PC is used> Controller setting software

- Step data setting, parameter setting, monitor, teaching, etc., are indicated in different windows.

The actuator and controller are provided as a set. (They can be ordered separately.)
Confirm that the combination of the controller and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This matches the controller.
(2) Check Parallel I/O configuration matches (NPN or PNP).

Fieldbus Network

CC-Link Direct Input Type Step Motor Controller
 LECPMJ Series CPase 600

©CC-Link Ver. 1.10 compliant
© External data import function

- The step data can be rewrite temporarily by feeding back external information to the PLC. 64 or more data points can be defined with the 3 types of data import modes.

Operation example: The opening width of the electric gripper is changed appropriately according to the results of the measurement with the imaging camera.

- 3 types of data import modes

Single numeric parameter (Number of occupied stations: 1) Movement MOD (movement mode) and another parameter item are changed.
Half numeric parameters (Number of occupied stations: 2) Up to 6 parameter items are changed at once.
Full numeric parameters (Number of occupied stations: 4) Up to 12 parameter items are changed at once.Position and speed can be monitored by the PLC touch panel (display).Step data can be edited from the PLC touch panel (display). (Except in the case of the single numeric parameter)
Function that can be executed in each mode

Mode setting	Single numeric parameter	Half numeric parameters	Full numeric parameters	
Number of definable numerical data items	1	6	12	
Number of occupied stations	1	2	4	
Max. number of connectable controllers	42	32	16	
Step no. defining operation		\bigcirc		
Numerical data defining operation		\bigcirc		
Monitor of position/speed				
Step data editing				

EtherCAT®/EtherNet/IPTM/PROFINET/

 DeviceNet ${ }^{\text {TM } / I O-L i n k ~ D i r e c t ~ I n p u t ~ T y p e ~}$ Step Motor Controller/JXC \square Series Peage603.5

Application

Communication protocols
EtherCAT. ${ }^{*}$ Etheri'et/IP PROPT
-
Deviceivet
Can be additionally installed in an existing network

<Applicable Electric Actuators>

Both air and electric systems can be established under the same protocol.

Low Profile Slider Type
LEM Series

Guide Rod Slider LEL Series

Fieldbus Network

Fieldbus-compatible Gateway (GW) Unit

LEC-G Series PPage 572

Conversion unit for Fieldbus network and LEC serial communication

© Two methods of operation

Step data input: Operate using preset step data in the controller.
Numerical data input: The actuator operates using values such as position and speed from the PLC.Values such as position, speed can be checked on the PLC.

Programless Type LECP1 Series •Page 576

No Programming

Capable of setting up an electric actuator operation without using a PC or teaching box

Pulse Input Type LECPA Series \bullet Page 590

- A driver that uses pulse signals to allow positioning at any position. The actuator can be controlled from the customers' positioning unit.

- Return-to-origin command signal

Enables automatic return-to-origin action.

- With force limit function (Pushing force/Gripping force operation available)

Pushing force/Positioning operation possible by switching signals.

Programless Type (with Stroke Study) LECP2 series •Page 583

Stroke end operation similar to an air cylinder is possible.

(using the 1 stroke study and 2 reduced wiring below)

Step motor (Servo/24 VDC) LECP2

Stroke study (Simple registration of both stroke end positions)

After the stroke adjustment unit has travelled, both stroke ends are automatically registered by the stroke study function!
(1) Setting position number

Set the position selecting switch to $15(\mathrm{~F})$.

(2) The stroke study begins

Press the SET button for 3 seconds or longer.

․III> Automatic registration of both end positions

Wiring (Reduced wiring)

2-wire input signals*

* Both stroke end positions and an intermediate position can be set using this wiring.

Speed/Acceleration
16-level adjustment

Compatible Actuators

Function				
Item	Step data input type LECP6/LECA6	Programless type LECP1	Programless type (With stroke study) LECP2	Pulse input type LECPA
Step data and parameter setting	- Input from controller setting software (PC) - Input from teaching box	- Select using controller operation buttons	- Select using controller operation buttons	- Input from controller setting software (PC) - Input from teaching box
Step data "position" setting	- Input the numerical value from controller setting software (PC) or teaching box - Input the numerical value - Direct teaching - JOG teaching	- Direct teaching - JOG teaching	- Stroke end: Automatic measurement - Intermediate position: Direct teaching JOG teaching	- No "Position" setting required Position and speed set by pulse signal
Number of step data	64 points	14 points	2 stroke end points +12 intermediate points (14 points in total)	-
Operation command (IV) signal)	Step No. [IN*] input \Rightarrow [DRIVE] input	Step No. [IN"] input only	Step No. [IN'] input only	Pulse signal
Completion signal	[INP] output	[OUT*] output	[OUT ${ }^{*}$] output	[INP] output

Setting Items

Item		Contents	Easy mode		Normal mode	Step data input type LECP6/LECA6	Pulse input type LECPA	Programless type LECP1	Programless type (With stroke study) LECP2	
		TB	PC	TB•PC						
Step data setting (Excerpt)	Movement MOD		Selection of "absolute position" and "relative position"	\triangle	\bigcirc	\bigcirc	Set at Absolute/ Relative	No setting required	Fixed value (Absolute)	Fixed value (Absolute)
	Speed	Transfer speed	-	\bigcirc	\bigcirc	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	Select from 16-level		Select from 16-level	
	Position	[Position]: Target position [Pushing]: Pushing start position	-	-	\bigcirc	Set in units of 0.01 mm	Direct teaching JOG teaching		Stroke end: Automatic measurement Intermediate position: Direct teaching JOG teaching	
	Acceleration/ Deceleration	Acceleration/deceleration during movement	-	\bigcirc	\bigcirc	Set in units of $1 \mathrm{~mm} / \mathrm{s}^{2}$	Select from 16-level		Select from 16-level	
	Pushing force	Rate of force during pushing operation	-	\bigcirc	\bigcirc	Set in units of 1\%	Set in units of 1\%	Select from 3-level (weak, medium, strong)	No setting required	
	Trigger LV	Target force during pushing operation	\triangle	-	\bigcirc	Set in units of 1\%	Set in units of 1\%	No setting required (same value as pushing force)		
	Pushing speed	Speed during pushing operation	\triangle	\bigcirc	\bigcirc	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	No setting required		
	Moving force	Force during positioning operation	\triangle	-	\bigcirc	Set to 100\%	Set to (Different values for each actuator) \%			
	Area output	Conditions for area output signal to turn ON	\triangle	\bigcirc	\bigcirc	Set in units of 0.01 mm	Set in units of 0.01 mm			
	In position	[Position]: Width to the target position [Pushing]: How much it moves during pushing	\triangle	-	\bigcirc	Set to 0.5 mm or more (Units: 0.01 mm)	Set to (Different values for each actuator) or more (Units: 0.01 mm)			
Parameter setting (Excerpt)	Stroke (+)	+ side limit of position	\times	\times	\bigcirc	Set in units of 0.01 mm	Set in units of 0.01 mm			
	Stroke (-)	- side limit of position	\times	\times	\bigcirc	Set in units of 0.01 mm	Set in units of 0.01 mm			
	ORIG direction	Direction of the return to origin can be set.	\times	\times	\bigcirc	Compatible	Compatible	Compatible		
	ORIG speed	Speed during return to origin	\times	\times	\bigcirc	Set in units of $1 \mathrm{~mm} / \mathrm{s}$	Set in units of $1 \mathrm{~mm} / \mathrm{s}$			
	ORIG ACC	Acceleration during return to origin	\times	\times	\bigcirc	Set in units of $1 \mathrm{~mm} / \mathrm{s}^{2}$	Set in units of $1 \mathrm{~mm} / \mathrm{s}^{2}$	No setting required		
Test	JOG		-	-	\bigcirc	Continuous operation at the set speed can be tested vinile the switch is being pressed.	Continuous operation at the set speed can be tested while the swith is being pressed.	Hold down MANUAL button (®®) for uniform sending (speed is specified value)	Hold down MANUAL button (®()) for uniform sending (speed is specified value)	
	MOVE		\times	-	\bigcirc	Operation at the set distance and speed from the current position can be tested.	Operation at the set distance and speed from the current position can be tested.	Press MANUAL bution $(\wedge)($) once for sizing operation (speed, sizing amount are speciifed values)	Press MANUAL button ((®) once for sizing operation (speed, sizing amount are specified values)	
	Return to ORIG		-	-	\bigcirc	Compatible	Compatible	Compatible	Performed by the stroke endpoint operation when power is turned ON .	
	Test drive	Operation of the specified step data	-	-		Compatible	Not compatible	Compatible	Compatible	
	Forced output	ONOFF of the output teminal can be tested.	\times	\times	\bigcirc	Compatible	Compatible	Not compatible	Not compatible	
Monitor	DRV mon	Current position, speed, force and the specified step data can be monitored.	-	-	\bigcirc	Compatible	Compatible			
	In/Out mon	Current ON/OFF status of the input and output terminal can be monitored.	\times	\times	\bigcirc	Compatible	Compatible			
ALM	Status	Alarm currently being generated can be confirmed.	-	\bigcirc	\bigcirc	Compatible	Compatible	Compatible (display alarm group)	Compatible (display alarm group)	
	ALM Log record	Alarm generated in the past can be conifimed.	\times	\times	\bigcirc	Compatible	Compatible	Not compatible	Not compatible	
File	Save/Load	Step data and parameter can be saved, forwarded and deleted.	\times	\times	\bigcirc	Compatible	Compatible			
Other	Language	Can be changed to Japanese or English.	-	\bigcirc	\bigcirc	Compatible	Compatible			

\triangle : Can be set from TB Ver. 2.** (The version information is displayed on the initial screen)

* Programless type LECP1 cannot be used with the teaching box and controller setting kit.

554 ®

Multi－Axis Step Motor Controller

－Speed tuning control ${ }^{* 1}$

（3 Axes：JXC92 4 Axes：JXC73／83／93）
－Linear／circular interpolation

Circular interpolation

－Positioning／pushing operation
－Step data input （Max． 2048 points）
－Space saving，reduced wiring
－Absolute／relative position coordinate instructions
＊1 This controls the speed of the slave axis when the speed of the main axis drops due to the effects of an external force and when a speed difference with the slave axis occurs．This control is not for synchronizing the position of the main axis and slave axis．

For 3 Axes JXC92 Series

－Etheri＇et／IP Type －Width：Approx．38\％reduction

For 4 Axes JXC73／83／93 Series

－Parallel I／O／
Etherilet／IP Type if
－Width：Approx．18\％，部部 reduction

＊For LE \square ，size 25 or larger

For 3 Axes
 3-axis operation can be set collectively in one step.

Step	Axis	Movement mode	Speed	Position	Acceleration	Deceleration	Pushing force	Trigger LV	Pushing speed	Moving force	Area 1	Area 2	In position	Comments
			mm/s	mm	$\mathrm{mm} / \mathrm{s}^{2}$	$\mathrm{mm} / \mathrm{s}^{2}$					mm	mm	mm	
0	Axis 1	ABS	500	100.00	3000	3000	0	85.0	50	100.0	10.0	30.0	0.5	
	Axis 2	ABS	500	100.00	3000	3000	0	85.0	50	100.0	10.0	30.0	0.5	
	Axis 3	ABS	500	100.00	3000	3000	0	85.0	50	100.0	10.0	30.0	0.5	
1	Axis 1	INC	500	200.00	3000	3000	0	85.0	50	100.0	0	0	0.5	
	Axis 2	INC	500	200.00	3000	3000	0	85.0	50	100.0	0	0	0.5	
	Axis 3	INC	500	200.00	3000	3000	0	85.0	50	100.0	0	0	0.5	
-	!		!	+	+	+	+	,	+	+	!	!	+	
2046	Axis 1	SYN-I	500	100.00	3000	3000	0	0	0	100.0	0	0	0.5	
	Axis 2	SYN-1	0	0.00	0	0	0	0	0	100.0	0	0	0.5	
	Axis 3	SYN-I	0	0.00	0	0	0	0	0	100.0	0	0	0.5	
2047	Axis 1	CIR-R	500	0.00	3000	3000	0	0	0	100.0	0	0	0.5	
	Axis 2	CIR-R	0	50.00	0	0	0	0	0	100.0	0	0	0.5	
	Axis 3*1		0	0.00	0	0	0	0	0	100.0	0	0	0.5	
	Axis $4 * 1$		0	25.00	0	0	0	0	0	100.0	0	0	0.5	

*1 When circular interpolation (CIR-R, CIR-L, CIR-3) is selected in the movement mode, input the X and Y coordinates in the rotation center position or input the X and Y coordinates in the passing position.

Movement mode	Pushing operation	Details
Blank	\times	Invalid data (Invalid process)
ABS	\bigcirc	Moves to the absolute coordinate position based on the origin of the actuator
INC	\bigcirc	Moves to the relative coordinate position based on the current position
LIN-A	\times	Moves to the absolute coordinate position based on the origin of the actuator by linear interpolation
LIN-I	\times	Moves to the relative coordinate position based on the current position by linear interpolation
CIR-R*2	\times	With Axis 1 assigned to the X -axis and Axis 2 to the Y -axis, it moves in the clockwise direction by circular interpolation. The target position and rotation center position are specified according to the relative coordinates from the current position. The position data is assigned as follows. Axis 1: Target position X Axis 2: Target position Y Axis $3 * 1$: Rotation center position X Axis $4 * 1$: Rotation center position Y
CIR-L*2	\times	With Axis 1 assigned to the X -axis and Axis 2 to the Y -axis, it moves in the counter-clockwise direction by circular interpolation. The target position and rotation center position are specified according to the relative coordinates from the current position. The position data is assigned as follows. Axis 1: Target position X Axis 2: Target position Y Axis $3 * 1$: Rotation center position X Axis $4 * 1$: Rotation center position Y
SYN-I	\times	Moves to the relative coordinate position based on the current position by speed tuning control *3
CIR-3*2	\times	With Axis 1 assigned to the X -axis and Axis 2 to the Y -axis, it moves based on the three specified points by circular interpolation. The target position and passing position are specified according to the relative coordinates from the current position. The position data is assigned as follows. Axis 1: Target position X Axis 2: Target position Y Axis 3 *1: Passing position X Axis $4 * 1$: Passing position Y

*2 Performs a circular operation on a plane using Axis 1 and Axis 2
*3 This controls the speed of the slave axis when the speed of the main axis drops due to the effects of an external force and when a speed difference with the slave axis occurs. This control is not for synchronizing the position of the main axis and slave axis.

For 4 Axes
 4-axis operation can be set collectively in one step.

Step	Axis	Movement mode	Speed	Position	Acceleration	Deceleration	Positioning/ Pushing	Area 1	Area 2	In position	Comments
			mm/s	mm	$\mathrm{mm} / \mathrm{s}^{2}$	$\mathrm{mm} / \mathrm{s}^{2}$		mm	mm	mm	
0	Axis 1	ABS	100	200.00	1000	1000	0	6.0	12.0	0.5	
	Axis 2	ABS	50	100.00	1000	1000	0	6.0	12.0	0.5	
	Axis 3	ABS	50	100.00	1000	1000	0	6.0	12.0	0.5	
	Axis 4	ABS	50	100.00	1000	1000	0	6.0	12.0	0.5	
1	Axis 1	INC	500	250.00	1000	1000	1	0	0	20.0	
	Axis 2	INC	500	250.00	1000	1000	1	0	0	20.0	
	Axis 3	INC	500	250.00	1000	1000	1	0	0	20.0	
	Axis 4	INC	500	250.00	1000	1000	1	0	0	20.0	
+	,		-	!	!	+	\|	+	+	!	
2046	Axis 4	ABS	200	700	500	500	0	0	0	0.5	
2047	Axis 1	ABS	500	0.00	3000	3000	0	0	0	0.5	
	Axis 2	ABS	500	0.00	3000	3000	0	0	0	0.5	
	Axis 3	ABS	500	0.00	3000	3000	0	0	0	0.5	
	Axis 4	ABS	500	0.00	3000	3000	0	0	0	0.5	

Movement mode	Pushing operation	Details
Blank	\times	Invalid data (Invalid process)
ABS	\bigcirc	Moves to the absolute coordinate position based on the origin of the actuator
INC	\bigcirc	Moves to the relative coordinate position based on the current position
LIN-A	\times	Moves to the absolute coordinate position based on the origin of the actuator by linear interpolation
LIN-I	\times	Moves to the relative coordinate position based on the current position by linear interpolation
CIR-R*1	\times	With Axis 1 assigned to the X -axis and Axis 2 to the Y -axis, it moves in the clockwise direction by circular interpolation. The target position and rotation center position are specified according to the relative coordinates from the current position. The position data is assigned as follows. Axis 1: Target position X Axis 2: Target position Y Axis 3: Rotation center position X Axis 4: Rotation center position Y
CIR-L* ${ }^{*}$	\times	With Axis 1 assigned to the X -axis and Axis 2 to the Y -axis, it moves in the counter-clockwise direction by circular interpolation. The target position and rotation center position are specified according to the relative coordinates from the current position. The position data is assigned as follows. Axis 1: Target position X Axis 2: Target position Y Axis 3: Rotation center position X Axis 4: Rotation center position Y
SYN-I	\times	Moves to the relative coordinate position based on the current position by speed tuning control *2

*1 Performs a circular operation on a plane using Axis 1 and Axis 2
*2 This controls the speed of the slave axis when the speed of the main axis drops due to the effects of an external force and when a speed difference with the slave axis occurs. This control is not for synchronizing the position of the main axis and slave axis.

- Controller Setting Software (Connection with a PC)

Easy file management

Load	The step data is loaded from the file.
Save	The step data is saved in a file.
Upload	The step data is loaded from the controller.
Download	The step data is written in the controller.

Abundant edit functions

Copy	The selected step data is copied to the clipboard.
Delete	The selected step data is deleted.
Cut	The selected step data is cut.
Paste (Insert)	The step data copied to the clipboard is inserted into the cursor's position.
Paste (Overwrite)	The step data copied to the clipboard overwrites the data at the cursor position.
Insert	A blank line is inserted in the selected step data line.

Step data window

Operation confirmation of entered step data

	Enter the step number to be executed.
	Executes the specified step number.
Stop	Displays whether the step number is being executed or stopped.
All axes return to origin	Performs a return to origin of all the valid axes.

System Construction/General Purpose I/O

System Construction/Pulse Signal

System Construction/Programless Type

Note) When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

System Construction/Fieldbus Network (CC-Link Direct Input Type)
 (EtherCAT®/EtherNet/IPTM/PROFINET/DeviceNet™/IO-Link Direct Input Type)

System Construction/Fieldbus Network

System Construction/ EtherNet/IP ${ }^{\text {ww }}$ Type (JXC92)

System Construction/EtherNet/IP ${ }^{\text {Tu }}$ Type (JXC93)

Controller (Step Data Input Type) Step Motor (Servo/24 VDC)

 LECP6 Series Servo Motor (24 VDC) LECA6 Series
How to Order

\triangle Caution

[CE-compliant products]
(1) EMC compliance was tested by combining the electric actuator LE series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) For the LECA6 series (servo motor controller), EMC compliance was tested by installing a noise filter set (LEC-NFA). Refer to page 568 for the noise filter set. Refer to the LECA Operation Manual for installation. [UL-compliant products]
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

* When controller equipped type is selected when ordering the LE series, you do not need to order this controller.

The controller is sold as single unit after the compatible actuator is set.

Confirm that the combination of the controller and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This matches the controller.
(2) Check Parallel I/O configuration matches (NPN or PNP).

* Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

Precautions on blank controller (LEC $\square 6 \square \square$-BC)

Blank controller is a controller to which the customer can write the data of the actuator to be combined and used. Use the dedicated software (LEC-BCW) for data writing.

- Please download the dedicated software (LEC-BCW) via our website.
- Order the communication cable for controller setting (LEC-W2A-C) separately to use this software.

SMC website
https://www.smcworld.com

Specifications

Basic Specifications

Item	LECP6	LECA6
Compatible motor	Step motor (Servo/24 VDC)	Servo motor (24 VDC)
Power supply Note 1)	Power voltage: 24 VDC $\pm 10 \%$ Note 2) [Including motor drive power, control power, stop, lock release]	Power voltage: 24 VDC $\pm 10 \%$ Note 2) [Including motor drive power, control power, stop, lock release]
Parallel input	11 inputs (Photo-coupler isolation)	
Parallel output	13 outputs (Photo-coupler isolation)	
Compatible encoder	Incremental A/B phase (800 pulse/rotation)	Incremental A/B (800 pulse/rotation)/Z phase
Serial communication	RS485 (Modbus protocol compliant)	
Memory	EEPROM	
LED indicator	LED (Green/Red) one of each	
Lock control	Forced-lock release terminal Note 3)	
Cable length [m]	I/O cable: 5 or less, Actuator cable: 20 or less	
Cooling system	Natural air cooling	
Operating temperature range $\left.{ }^{\circ} \mathrm{C}\right]$	0 to 40 (No freezing)	
Operating humidity range [\%RH]	90 or less (No condensation)	
Storage temperature range $\left[{ }^{\circ} \mathrm{C}\right]$	-10 to 60 (No freezing)	
Storage humidity range [\%RH]	90 or less (No condensation)	
Insulation resistance [M 2]	Between the housing and SG terminal: 50 (500 VDC)	
Weight [g]	150 (Screw mounting), 170 (DIN rail mounting)	
Note 1) Do not use the controller power s tuator and control	wer supply of "inrush current prevention type" for the upply. When conformity to UL is required, the electric acer should be used with a UL1310 Class 2 power supply. Note 2) Note 3)	The power consumption changes depending on the actuator model. Refer to the specifications of actuator for more details. Applicable to non-magnetizing lock.

How to Mount

a) Screw mounting (LEC $\square 6 \square \square-\square$) (Installation with two M4 screws)

b) DIN rail mounting (LEC $\square 6 \square \square \mathrm{D}-\square$) (Installation with the DIN rail)
 the lever of section \mathbf{A} in the arrow direction to lock it.

Note) When size 25 or more of the LE series are used, the space between the controllers should be 10 mm or more.

DIN rail
 AXT100-DR- \square

* For \square, enter a number from the "No." line in the table below. Refer to the dimensions on page 562 for the mounting dimensions.

L Dimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

DIN rail mounting adapter

LEC-DO (with 2 mounting screws)

This should be used when the DIN rail mounting adapter is mounted onto the screw mounting type controller afterwards.

LECP6 Series
 LECA6 Series

Dimensions

a) Screw mounting (LEC $\square 6 \square \square-\square$)

b) DIN rail mounting (LEC $\square 6 \square \square D-\square$)

Controller (Step Data Input Type)/Step Motor (Servo/24 vDC) LECP6 Series Controller (Step Data Input Type)/Servo Motor (24 vDC) LECA6 Series

Wiring Example 1

Power Supply Connector: CN1
 * Power supply plug is an accessory
 <Applicable cable size> AWG20 $\left(0.5 \mathrm{~mm}^{2}\right)$, cover diameter 2.0 mm or less

CN1 Power Supply Connector Terminal for LECP6 (PHOENIX CONTACT FK-MC0.5/5-ST-2.5)

Terminal name	Function	Details
0 V	Common supply (-)	M 24V terminal/C 24V terminal/EMG terminal/BK RLS terminal are common (-).
M 24V	Motor power supply (+)	Motor power supply (+) supplied to the controller
C 24V	Control power supply (+)	Control power supply (+) supplied to the controller
EMG	Stop (+)	Input (+) for releasing the stop
BK RLS	Lock release (+)	Input (+) for releasing the lock

CN1 Power Supply Connector Terminal for LECA6 (PHOENIX CONTACT FK-MC0.5/7-ST-2.5)

Terminal name	Function	Details
OV	Common supply (-)	M 24V terminal/C 24V terminal/EMG terminal/BK RLS terminal are common (-).
M 24V	Motor power supply (+)	Motor power supply (+) supplied to the controller
C 24V	Control power supply (+)	Control power supply (+) supplied to the controller
EMG	Stop (+)	Input (+) for releasing the stop
BK RLS	Lock release (+)	Input (+) for releasing the lock
RG +	Regenerative output 1	Regenerative output terminals for external connection
RG-	Regenerative output 2	(Not necessary to connect them in the combination with the LE series standard specifications.)

Power supply plug for LECP6: LEC-D-1-1

Power supply plug for LECA6: LEC-D-1-2

Wiring Example 2

* When you connect a PLC, etc., to the CN5 parallel I/O connector, please use the I/O cable (LEC-CN5- \square). * The wiring should be changed depending on the type of the parallel I/O (NPN or PNP).

Parallel I/O Connector: CN5

Wiring diagram
LEC $\square 6 N \square \square$ - \square (NPN)

LEC $\square \mathbf{6 P \square \square - \square ~ (P N P) ~}$

Output Signal

Name	Details
OUT0 to OUT5	Outputs the step data no. during operation
BUSY	Outputs when the actuator is moving
AREA	Outputs within the step data area output setting range
SETON	Outputs when returning to origin
INP	Outputs when target position or target force is reached (Turns on when the positioning or pushing is completed.)
SVRE	Outputs when servo is on
*ESTOP Note)	Not output when EMG stop is instructed
*ALARM Note)	Not output when alarm is generated

[^0]
LECP6 Series LECA6 Series

Step Data Setting

1. Step data setting for positioning

In this setting, the actuator moves toward and stops at the target position.
The following diagram shows the setting items and operation. The setting items and set values for this operation are stated below.

Step Data (Positioning)		© : Need to be set. O: Need to be adjusted as required. -: Setting is not required.
Necessity	Item	Details
©	Movement MOD	When the absolute position is required, set Absolute. When the relative position is required, set Relative.
($)$	Speed	Transfer speed to the target position
()	Position	Target position
\bigcirc	Acceleration	Parameter which defines how rapidly the actuator reaches the speed set. The higher the set value, the faster it reaches the speed set.
\bigcirc	Deceleration	Parameter which defines how rapidly the actuator comes to stop. The higher the set value, the quicker it stops.
©	Pushing force	Set 0 . (If values 1 to 100 are set, the operation will be changed to the pushing operation.)
-	Trigger LV	Setting is not required.
-	Pushing speed	Setting is not required.
\bigcirc	Moving force	Max. torque during the positioning operation (No specific change is required.)
\bigcirc	Area 1, Area 2	Condition that turns on the AREA output signal.
\bigcirc	In position	Condition that turns on the INP output signal. When the actuator enters the range of [in position], the INP output signal turns on. (It is unnecessary to change this from the initial value.) When it is necessary to output the arrival signal before the operation is completed, make the value larger.

2. Step data setting for pushing

The actuator moves toward the pushing start position, and when it reaches that position, it starts pushing with the set force or less.
The following diagram shows the setting items and operation. The setting items and set values for this operation are stated below.

Step Data (Pushing)		Need to be set. Need to be adjusted as required.
Necessity	Item	Details
©	Movement MOD	When the absolute position is required, set Absolute. When the relative position is required, set Relative.
©	Speed	Transfer speed to the pushing start position
()	Position	Pushing start position
\bigcirc	Acceleration	Parameter which defines how rapidly the actuator reaches the speed set. The higher the set value, the faster it reaches the speed set.
\bigcirc	Deceleration	Parameter which defines how rapidly the actuator comes to stop. The higher the set value, the quicker it stops.
©	Pushing force	Pushing force ratio is defined. The setting range differs depending on the electric actuator type. Refer to the operation manual for the electric actuator.
©	Trigger LV	Condition that turns on the INP output signal. The INP output signal turns on when the generated force exceeds the value. Trigger level should be the pushing force or less.
\bigcirc	Pushing speed	Pushing speed during pushing. When the speed is set fast, the electric actuator and workpieces might be damaged due to the impact when they hit the end, so this set value should be smaller. Refer to the operation manual for the electric actuator.
\bigcirc	Moving force	Max. torque during the positioning operation (No specific change is required.)
\bigcirc	Area 1, Area 2	Condition that turns on the AREA output signal.
©	In position	Transfer distance during pushing. If the transferred distance exceeds the setting, it stops even if it is not pushing. If the transfer distance is exceeded, the INP output signal will not turn on.

Signal Timing

Return to Origin

* "*ALARM" and "*ESTOP" are expressed as negative-logic circuit.

* "OUT" is output when "DRIVE" is changed from ON to OFF.

Refer to the operation manual for details on the controller for the LEM series. (When power supply is applied, "DRIVE" or "RESET" is turned ON or "*ESTOP" is turned OFF, all of the "OUT" outputs are OFF.)

HOLD

[^1] does not stop even if HOLD signal is input.

LECP6 Series

LECA6 Series

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]

Controller (Step Data Input Type)/Step Motor (Servo/24 vDC) LECP6 Series Controller (Step Data Input Type)/Servo Motor (24 vDC) LECA6 Series

[Robotic cable for servo motor (24 VDC)]

LE - CA $-\mathbf{1}$
Cable length (L) $[\mathrm{m}]$
$\mathbf{1}$
$\mathbf{3}$
$\mathbf{5}$
$\mathbf{8}$
A
B
\mathbf{C}

* Produced upon receipt of order

Weight

Product no.	Weight [g]
LE-CA-1	220
LE-CA-3	420
LE-CA-5	700
LE-CA-8	1100
LE-CA-A	1370
LE-CA-B	2050
LE-CA-C	2720

LE-CA- \square

Controller side

Signal	Connector A terminal no.		Cable color	Connector C terminal no.
U	1		Red	1
V	2		White	2
W	3		Black	3
Signal	Connector B terminal no.	Shield	Cable color	Connector D terminal no.
Vcc	B-1	it	Brown	12
GND	A-1	1	Black	13
$\overline{\mathrm{A}}$	B-2	-	Red	7
A	A-2	i	Black	6
\bar{B}	B-3	!	Orange	9
B	A-3	i	Black	8
$\overline{\text { Z }}$	B-4	1,	Yellow	11
Z	A-4		Black	10
			-	3

[Robotic cable with lock and sensor for servo motor (24 VDC)]

Cable length (L) [m]

1	1.5
3	3
5	5
8	8^{*}
A	10^{*}
B	15^{*}
C	20^{*}

* Produced upon receipt of order With lock and sensor

Weight

Product no.	Weight [g]
LE-CA-1-B	270
LE-CA-3-B	520
LE-CA-5-B	870
LE-CA-8-B	1370
LE-CA-A-B	1710
LE-CA-B-B	2560
LE-CA-C-B	3400

LE-CA- \square-B

Signal	Connector A1 terminal no.		Cable color	Connector C terminal no.
U	1		Red	1
V	2		White	2
W	3		Black	3
Signal	Connector A2 terminal no.	Shield	Cable color	Connector D terminal no.
Vcc	B-1	\bigcirc	Brown	12
GND	A-1	i	Black	13
$\overline{\mathrm{A}}$	B-2		Red	7
A	A-2		Black	6
\bar{B}	B-3		Orange	9
B	A-3	$\bigcirc \times \infty$,	Black	8
$\overline{\mathrm{Z}}$	B-4	,	Yellow	11
Z	A-4	', $冂^{\prime}$	Black	10
		Connection of shield material	-	3
Signal	terminal no.	Connection of shield materia	,	
Lock (+)	B-1		Red	4
Lock (-)	A-1		Black	5
Sensor (+)	B-3	\bigcirc	Brown	1
Sensor (-)	A-3		Black	2

LECP6 Series
 LECA6 Series

Option: I/O Cable

LEC-CN5-1
Cable length (L) [m]

1	1.5
3	3
5	5

Connector pin no.	Insulation color	Dot mark	Dot color
A1	Light brown	\square	Black
A2	Light brown	\square	Red
A3	Yellow	\square	Black
A4	Yellow	\square	Red
A5	Light green	\square	Black
A6	Light green	\square	Red
A7	Gray	\square	Black
A8	Gray	\square	Red
A9	White	\square	Black
A10	White	\square	Red
A11	Light brown	■ ■	Black
A12	Light brown	■ ■	Red
A13	Yellow	■ ■	Black

Connector pin no.	Insulation color	Dot mark	$\begin{aligned} & \text { Dot } \\ & \text { color } \end{aligned}$
B1	Yellow	■ ■	Red
B2	Light green	■ ■	Black
B3	Light green	■ ■	Red
B4	Gray	■ ■	Black
B5	Gray	■ ■	Red
B6	White	■ ■	Black
B7	White	■ ■	Red
B8	Light brown	■■■	Black
B9	Light brown	■■■	Red
B10	Yellow	■■■	Black
B11	Yellow	■■■	Red
B12	Light green	■■■	Black
B13	Light green	■■■	Red
-	Shield		

Option: Noise Filter Set for Servo Motor (24 VDC)

LEC - NFA

Contents of the set: 2 noise filters (Manufactured by WURTH ELEKTRONIK: 74271222)

* Refer to the LECA6 series Operation Manual for installation.

LEC Series

Communication Cable for Controller Setting/LEC-W2A- \square

Compatible Controller/Driver

Step data input type	LECP6 Series/LECA6 Series
Pulse input type	LECPA Series
CC-Link direct input type	LECPMJ Series
Step Motor Controller	JXCE1/91/P1/D1/L1 Series

* When connecting to a JXCE1/91/P1/D1/L1 series product, use a conversion cable (P5062-5) as a relay.

Hardware Requirements

OS	Windows $^{\circledR} 7$, Windows ${ }^{\circledR} 8.1$, Windows $^{\circledR 10} 10$
Communication interface	USB 1.1 or USB 2.0 ports
Display	1024×768 or more

* Windows ${ }^{\circledR 7}$, Windows ${ }^{\circledR 8.1}$ and Windows ${ }^{\circledR 10}$ are registered trademarks of Microsoft Corporation in the United States.

Screen Example

Easy mode screen example

Easy operation and simple setting

- Allowing to set and display actuator step data such as position, speed, force, etc.
- Setting of step data and test drive can be performed on the same page.
- Can be used to jog and move at a constant rate.

Normal mode screen example

Detailed setting

- Step data can be set in detail.
- Signals and terminal status can be monitored.
- Parameters can be set.
- JOG and constant rate movement, return to origin, test drive and testing of forced output can be performed.

LEC Series
 Teaching Box/LEC-T1

RoHS

How to Order

Standard functions

- Chinese character display
- Stop switch is provided.

Option

- Enable switch is provided.

* The displayed language can be changed to English or Japanese.

Specifications

Item	Description
Switch	Stop switch, Enable switch (Option)
Cable length [m]	3
Enclosure	IP64 (Except connector)
Operating temperature range $\left[{ }^{\circ} \mathbf{C}\right]$	5 to 50
Operating humidity range [\%RH]	90 or less (No condensation)
Weight [g]	350 (Except cable)

[CE-compliant products]
The EMC compliance of the teaching box was tested with the LECP6 series step motor controller (servo/24 VDC) and an applicable actuator.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Easy Mode

Function	Details
Step data	- Setting of step data
Jog	- Jog operation - Return to origin
Test	- 1 step operation - Return to origin
Monitor	- Display of axis and step data no. - Display of two items selected from Position, Speed, Force.
ALM	- Active alarm display - Alarm reset
TB setting	- Reconnection of axis (Ver. 1.**) - Displayed language setting (Ver. 2.**) - Setting of easy/normal mode - Setting step data and selection of items from easy mode monitor

Menu Operations Flowchart

Menu	Data
Data Monitor Jog Test ALM TB setting	Step data no.
	Setting of two items selected below
	Ver. 1.**:
	Position, Speed, Force, Acceleration, Deceleration
	Ver. 2.**:
	Position, Speed, Pushing force, Acceleration, Deceleration, Movement MOD,
	Trigger LV, Pushing speed, Moving force, Area 1, Area 2, In position

Monitor Display of step no. Display of two items selected below (Position, Speed, Force)
Jog Return to origin Jog operation Test 1 step operation ALM Active alarm display Alarm reset TB setting Reconnect (Ver. 1.**) Japanese/English (Ver. 2.**) Easy/Normal Set item

Normal Mode

Function	Details
Step data	- Step data setting
Parameter	- Parameters setting
	- Jog operation/Constant rate movement - Return to origin - Test drive (Specify a maximum of 5 step data and operate.) - Forced output (Forced signal output, Forced terminal output)
Monitor	- Drive monitor - Output signal monitor - Input signal monitor - Output terminal monitor - Input terminal monitor
ALM	- Active alarm display (Alarm reset)
	- Alarm log record display

Menu Operations Flowchart

Menu
Step data
Parameter
Monitor
Test
ALM
File
TB setting
Reconnect

Step data	
Step data no. Movement MOD Speed Position Acceleration Deceleration Pushing force Trigger LV Pushing speed Moving force Area 1, 2 In position	
Parameter	Basic setting
Basic ORIG	ORIG setting
Monitor	DRV monitor
Drive Output signal Input signal Output terminal Input terminal	Position, Speed, Torque Step no. Last step no. Output signal monitor
Test	nput signal monitor
JOG/MOVE Return to ORIG Test drive Forced output	Output terminal monitor Input terminal monitor
ALM	Status
Status ALM Log record	Active alarm display Alarm reset
File	ALM Log record display
Data saving Load to controller File deletion File protection (Ver. 2.**)	Log entry display
TB setting	
Easy/Normal Language Backlight LCD contrast Beep Max. connection axis Password Distance unit	
Reconnect	

Dimensions

No.	Description	Function
$\mathbf{1}$	LCD	A screen of liquid crystal display (with backlight)
$\mathbf{2}$	Ring	A ring for hanging the teaching box
$\mathbf{3}$	Stop switch	When switch is pushed in, the switch locks and stops. The lock is released when it is turned to the right.
$\mathbf{4}$	Stop switch guard	A guard for the stop switch
$\mathbf{5}$	Enable switch (Option)	Prevents unintentional operation (unexpected operation) of the jog test function. Other functions such as data change are not covered.
$\mathbf{6}$	Key switch	Switch for each input
$\mathbf{7}$	Cable	Length: 3 meters
$\mathbf{8}$	Connector	A connector connected to CN4 of the controller

Gateway Unit LEC-G Series

\triangle Caution

[CE-compliant products] EMC compliance was tested by combining the electric actuator LE series and the controller LEC series. The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
[UL-compliant products] When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Specifications

Model			LEC-GMJ2 \square		LEC-GDN1 \square	LEC-GPR1 \square	LEC-GEN1 \square
Communication specifications	Applicable system	Fieldbus	CC-Link		DeviceNet ${ }^{\text {TM }}$	PROFIBUS DP	EtherNet/IPTM
		Version ${ }^{\text {Note }} 1$)	Ver. 2.0		Release 2.0	V1	Release 1.0
	Communication speed [bps]		$\begin{gathered} 156 \mathrm{k} / 625 \mathrm{k} / 2.5 \mathrm{M} \\ / 5 \mathrm{M} / 10 \mathrm{M} \end{gathered}$		125 k/250 k/500 k	$9.6 \mathrm{k} / 19.2 \mathrm{k} / 45.45 \mathrm{k} /$ $93.75 \mathrm{k} / 187.5 \mathrm{k} / 500 \mathrm{k} /$ $1.5 \mathrm{M} / 3 \mathrm{M} / 6 \mathrm{M} / 12 \mathrm{M}$	$10 \mathrm{M} / 100 \mathrm{M}$
	Configuration file ${ }^{\text {Note 2) }}$			-	EDS file	GSD file	EDS file
	I/O occupation area		4 stations occupied (8 times setting)	Input 896 points 108 words Output 896 points 108 words	Input 200 bytes Output 200 bytes	Input 57 words Output 57 words	Input 256 bytes Output 256 bytes
				-	11 to 25 VDC	-	-
				-	100	-	-
	Communication connector specifications		Connector	(Accessory)	Connector (Accessory)	D-sub	RJ45
	Terminating resistor		Not	ncluded	Not included	Not included	Not included
Power supply voltage [V] ${ }^{\text {Note } 6)}$			24 VDC $\pm 10 \%$				
Current consumption [mA]	Not connected to teaching box		200				
	Connected to teaching box		300				
EMG output terminal			30 VDC 1 A				
Controller specifications	Applicable controllers		LECP6 Series, LECA6 Series				
	Communication speed [bps] ${ }^{\text {Note 3) }}$		$115.2 \mathrm{k} / 230.4 \mathrm{k}$				
	Max. number of connectable controllers ${ }^{\text {Note } 4)}$			12	$8^{\text {Note 5) }}$	5	12
Accessories			Power supply connector, communication connector			Power supply connector	
Operating temperature range [${ }^{\circ} \mathrm{C}$]			0 to 40 (No freezing)				
Operating humidity range [\%RH]			90 or less (No condensation)				
Storage temperature range [${ }^{\circ} \mathrm{C}$]			-10 to 60 (No freezing)				
Storage humidity range [\%RH]			90 or less (No condensation)				
Weight [g]			200 (Screw mounting), 220 (DIN rail mounting)				

Note 1) Please note that the version is subject to change.
Note 2) Each file can be downloaded from the SMC website, http://www.smcworld.com
Note 3) When using a teaching box (LEC-T1- \square), set the communication speed to 115.2 kbps.
Note 4) A communication response time for 1 controller is approximately 30 ms .
Refer to "Communication Response Time Guideline" for response times when several controllers are connected.
Note 5) For step data input, up to 12 controllers connectable.
Note 6) When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Communication Response Time Guideline

Response time between gateway unit and controllers depends on the number of controllers connected to the gateway unit. For response time, refer to the graph below.

* This graph shows delay times between gateway unit and controllers. Fieldbus network delay time is not included.

Dimensions

Screw mounting (LEC-G $\square \square \square$)

Applicable Fieldbus protocol: CC-Link Ver. 2.0

Applicable Fieldbus protocol: PROFIBUS DP

Applicable Fieldbus protocol: DeviceNet ${ }^{\text {TM }}$

Applicable Fieldbus protocol: EtherNet/IPTM

Dimensions

DIN rail mounting (LEC-G $\square \square \square D)$

Applicable Fieldbus protocol: CC-Link Ver. 2.0

Applicable Fieldbus protocol: PROFIBUS DP

Applicable Fieldbus protocol: DeviceNet ${ }^{\text {TM }}$

Applicable Fieldbus protocol: EtherNet/IPTM

DIN rail
 AXT100-DR- \square

* For \square, enter a number from the "No." line in the table below. Refer to the dimensions above for the mounting dimensions.

L Dimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

Wiring Example

Power Supply Connector: CN1 * Power supply plug is an accessory. <Applicable cable size> AWG20 ($0.5 \mathrm{~mm}^{2}$), cover diameter 2.0 mm or less
CN1 Power Supply Connector Terminal for LEC-G (PHOENIX CONTACT FK-MC0.5/5-ST-2.5)

Terminal name	Function	Details
EMG +	EMG signal output +	Output terminal of the emergency stop switch of the teaching box
EMG -	EMG signal output -	
$24 V$	Power supply + terminal	Power supply terminal of the Gateway unit (Power to the teaching box is supplied from this terminal)
OV	Power supply - terminal	

Power supply plug for LEC-G: LEC-D-1-1

How to Order

Caution

[CE-compliant products]
EMC compliance was tested by combining the electric actuator LE series and the controller LEC series. The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

The controller is sold as single unit after the compatible actuator is set.
Confirm that the combination of the controller and the actuator is correct.

* Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

Specifications

Basic Specifications

Item	LECP1
Compatible motor	Step motor (Servo/24 VDC)
Power supply Note 1)	Power supply voltage: 24 VDC $\pm 10 \%$ Note 2) [Including the motor drive power, control power supply, stop, lock release]
Parallel input	6 inputs (Photo-coupler isolation)
Parallel output	6 outputs (Photo-coupler isolation)
Stop points	14 points (Position number 1 to 14(E))
Compatible encoder	Incremental A/B phase (800 pulse/rotation)
Memory	EEPROM
LED indicator	LED (Green/Red) one of each
7-segment LED display Note 3)	1 digit, 7-segment display (Red) Figures are expressed in hexadecimal ("10" to "15" in decimal number are expressed as "A" to "F")
Lock control	Forced-lock release terminal Note 4)
Cable length [m]	I/O cable: 5 or less, Actuator cable: 20 or less
Cooling system	Natural air cooling
Operating temperature range [${ }^{\circ} \mathrm{C}$]	0 to 40 (No freezing)
Operating humidity range [\%RH]	90 or less (No condensation)
Storage temperature range [${ }^{\circ} \mathrm{C}$]	-10 to 60 (No freezing)
Storage humidity range [\%RH]	90 or less (No condensation)
Insulation resistance [M 2]	Between the housing and SG terminal: 50 (500 VDC)
Weight [g]	130 (Screw mounting), 150 (DIN rail mounting)

Note 1) Do not use the power supply of "inrush current prevention type" for the controller input power supply. When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.
Note 2) The power consumption changes depending on the actuator model. Refer to the each actuator's operation manual etc. for details.
Note 3) " 10 " to " 15 " in decimal number are displayed as follows in the 7 -segment LED.

Note 4) Applicable to non-magnetizing lock.

Controller Details

No.	Display	Description	Details
(1)	PWR	Power supply LED	Power supply ON/Servo ON : Green turns on Power supply ON/Servo OFF: Green flashes
(2)	ALM	Alarm LED	With alarm : Red turns on Parameter setting : Red flashes
(3)	-	Cover	Change and protection of the mode switch (Close the cover after changing switch)
(4)	-	FG	Frame ground (Tighten the screw with the washer when mounting the controller. Connect the ground wire.)
(5)	-	Mode switch	Switch the mode between manual and auto.
(6)	-	7-segment LED	Stop position, the value set by (8) and alarm information are displayed.
(7)	SET	Set button	Decide the settings or drive operation in Manual mode.
(8)	-	Position selecting switch	Assign the position to drive (1 to 14), and the origin position (15).
(9)	MANUAL	Manual forward button	Perform forward jog and inching.
(10)		Manual reverse button	Perform reverse jog and inching.
(11)	SPEED	Forward speed switch	16 forward speeds are available.
(12)	SPEED	Reverse speed switch	16 reverse speeds are available.
(13)	AC	Forward acceleration switch	16 forward acceleration steps are available.
(14)		Reverse acceleration switch	16 reverse acceleration steps are available.
(15)	CN1	Power supply connector	Connect the power supply cable.
(16)	CN2	Motor connector	Connect the motor connector.
(17)	CN3	Encoder connector	Connect the encoder connector.
(18)	CN4	I/O connector	Connect I/O cable.

How to Mount

Controller mounting shown below.

1. Mounting screw (LECP1 $\square \square-\square$)

(Installation with two M4 screws)

2. Grounding

Tighten the screw with the washer when mounting the ground wire as shown below.

Note) When size 25 or more of the LE series are used, the space between the controllers should be 10 mm or more.

\triangle Caution

\bullet M4 screws, cable with crimping terminal and tooth lock washer are not included. Be sure to carry out grounding earth in order to ensure the noise tolerance.

- Use a watchmaker's screwdriver of the size shown below when changing position switch (8) and the set value of the speed/acceleration switch (11) to (14).

[^2]

Magnified view of the end of the screwdriver

LECP1 Series

Dimensions
Screw mounting (LEC $\square 1 \square \square-\square$)

DIN rail mounting (LEC $\square 1 \square \square D-\square$)

DIN rail
AXT100-DR- \square

* For \square, enter a number from the "No." line in the table below.
Refer to the dimensions above for the mounting dimensions.
LDimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5
No.	15	16	17	18	19	20	21	22	23	24	25	26	27	28
\mathbf{L}	198	210.5	223	235.5	248	260.5	273	285.5	298	310.5	323	335.5	348	360.5
No.	29	30	31	32	33	34	35	36	37	38	39	40		
\mathbf{L}	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5		

DIN rail mounting adapter

LEC-1-DO (with 2 mounting screws)

This should be used when the DIN rail mounting adapter is mounted onto the screw mounting type controller afterwards.

Wiring Example 1

Power Supply Connector: CN1
 * When you connect a CN1 power supply connector, please use the power supply cable (LEC-CK1-1).
 * Power supply cable (LEC-CK1-1) is an accessory

CN1 Power Supply Connector Terminal for LECP1

Terminal name	Cable cobr	Function	Details
0V	Blue	Common supply (-)	M 24V terminal/C 24V terminal/BK RLS terminal are common (-).
M 24V	White	Motor power supply (+)	Motor power supply (+) supplied to the controller
C 24V	Brown	Control power supply (+)	Control power supply (+) supplied to the controller
BK RLS	Black	Lock release (+)	Input (+) for releasing the lock

Power supply cable for LECP1 (LEC-CK1-1)

Wiring Example 2

Parallel I/O Connector: CN4 * When you connect a PLC, etc., to the CN4 parallel I/O connector, please use the I/O cable (LEC-CK4- \square).

Input Signal

Name	Details			
COM+	Connects the power supply 24 V for input/output signal			
COM-	Connects the power supply 0 V for input/output signal			
INO to IN3	- Instruction to drive (input as a combination of IN0 to IN3) - Instruction to return to origin (INO to IN3 all ON simultaneously) Example - (instruction to drive for position no. 5)			
	IN3	IN2	IN1	INO
	OFF	ON	OFF	ON
RESET	Alarm reset and operation interruption During operation: deceleration stop from position at which signal is input (servo ON maintained) While alarm is active: alarm reset			
STOP	Instruction to stop (after maximum deceleration stop, servo OFF)			

Input Signal [INO - IN3] Position Number Chart
O: OFF © ON

Position number	IN3	IN2	IN1	INO
1	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4	\bigcirc	-	\bigcirc	\bigcirc
5	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10 (A)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
11 (B)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
12 (C)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
13 (D)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14 (E)	\bigcirc	-	-	\bigcirc
Return to origin	\bigcirc	\bigcirc	-	\bigcirc

PNP

		Power supply 24 VDC for I/O signal	
CN4			
COM+	1		$\stackrel{ }{\square}$
COM-	2		
OUT0	3	Load	
OUT1	4	Load	
OUT2	5	Load	
OUT3	6	Load	
BUSY	7	Load	
ALARM	8	Load	
INO	9		
IN1	10		
IN2	11		
IN3	12		
RESET	13		
STOP	14		

Output Signal

Name	Details			
OUT0 to OUT3	Turns on when the positioning or pushing is completed. (Output is instructed in the combination of OUT0 to 3.) Example - (operation complete for position no. 3)			
	OUT3 OUT2 OUT1 OFF OFF OUT0 BUSY Outputs when the actuator is moving *ALARM Note) Not output when alarm is active or servo OFF			

Note) Signal of negative-logic circuit (N.C.)

Output Signal [OUTO - OUT3] Position Number Chart O: OFF ©: ON

Position number	OUT3	OUT2	OUT1	OUTO
1	0	0	0	\bullet
2	0	0	\bullet	0
3	0	0	\bullet	\bullet
4	0	\bullet	0	0
5	0	\bullet	0	\bullet
6	0	\bullet	\bullet	0
7	0	\bullet	\bullet	\bullet
8	\bullet	0	0	0
9	\bullet	0	0	\bullet
$10(\mathrm{~A})$	\bullet	0	\bullet	0
$11(\mathrm{~B})$	\bullet	0	\bullet	\bullet
$12(\mathrm{C})$	\bullet	\bullet	0	0
$13(\mathrm{D})$	\bullet	\bullet	0	\bullet
$14(\mathrm{E})$	\bullet	\bullet	\bullet	0
Return to origin	\bullet	\bullet	\bullet	\bullet

LECP1 Series

Signal Timing
(1) Return to Origin

* "*ALARM" is expressed as negative-logic circuit.

(2) Positioning Operation

(3) Cut-off Stop (Reset Stop)

(4) Stop by the STOP Signal

(5) Alarm Reset

* "*ALARM" is expressed as negative-logic circuit.

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]

Cable typed

Nil	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

Weight

Product no.	Weight [g]	Note
LE-CP-1-B-S	240	
LE-CP-3-B-S	380	
LE-CP-5-B-S	630	
LE-CP-1-B	190	
LE-CP-3-B	360	
LE-CP-5-B	590	Robotic cable
LE-CP-8-B	1060	
LE-CP-A-B	1320	
LE-CP-B-B	1920	
LE-CP-C-B	2620	

(* Produced upon receipt of order)

Controller side
(Terminal no.)

Signal	Connector A terminal no.		Cable color	Connector C terminal no.
A	B-1		Brown	2
$\overline{\mathrm{A}}$	A-1		Red	1
B	B-2		Orange	6
\bar{B}	A-2		Yellow	5
COM-A/COM	B-3		Green	3
COM-B/-	A-3	Shield	Blue	4
			Cable color	Connector D terminal no.
Vcc	B-4		Brown	12
GND	A-4	$1 \times \sim 1$	Black	13
$\overline{\mathrm{A}}$	B-5	-	Red	7
A	A-5		Black	6
\bar{B}	B-6	1	Orange	9
B	A-6	$\xrightarrow[\text { ', }]{1} \times \infty \times 1$	Black	8
Signal	Connector B terminal no.		-	3
Lock (+)	B-1		Red	4
Lock (-)	A-1		Black	5
Sensor (+)	B-3		Brown	1
Sensor (-)	A-3		Blue	2

LECP1 Series

Options

[Power supply cable]

LEC - CK1-1

Temminal name	Covered color	Function
OV	Blue	Common supply (-)
M 24V	White	Motor power supply (+)
C 24V	Brown	Control power supply (+)
BK RLS	Black	Lock release (+)

[I/O cable]

LEC - CKA - Cable length (L) [m] | 1 | 1.5 |
| :---: | :---: |
| 3 | 3 |
| 5 | 5 |

Terminal no.	Insulation color	Dot mark	Dot color	Function
1	Light brown	\square	Black	COM+
2	Light brown	\square	Red	COM-
3	Yellow	\square	Black	OUT0
4	Yellow	\square	Red	OUT1
5	Light green	\square	Black	OUT2
6	Light green	\square	Red	OUT3
7	Gray	\square	Black	BUSY
8	Gray	\square	Red	ALARM
9	White	\square	Black	INO
10	White	\square	Red	IN1
11	Light brown	■ ■	Black	IN2
12	Light brown	■ ■	Red	IN3
13	Yellow	■ ■	Black	RESET
14	Yellow	■ ■	Red	STOP

* Conductor size: AWG26

Weight

Product no.	Weight [g]
LEC-CK4-1	100
LEC-CK4-3	200
LEC-CK4-5	330

[^3]
Programless Controller (With Stroke Study)

How to Order

> \triangle Caution
> [CE-compliant products]
> EMC compliance was tested by combining the electric actuator LEM series and the controller LEC series. The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is
necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a components incorporated into the customer's equipment under actual operating conditions. As a result, it is
necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
> [UL-compliant products]
> When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

The controller is sold as single unit after the compatible actuator is set.

Confirm that the combination of the controller and the actuator is correct.

* Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

Specifications

Basic Specifications

Item	LECP2
Compatible motor	Step motor (Servo/24 VDC)
Power supply Note 1)	Power supply voltage: 24 VDC $\pm 10 \%$ Note 2) [Including the motor drive power, control power supply, stop, lock release]
Parallel input	6 inputs (Photo-coupler isolation)
Parallel output	6 outputs (Photo-coupler isolation)
Stop points	Stroke ends 2 points (Position number 1 and 2), Intermediate position 12 points (Position number 3 to 14(E))
Compatible encoder	Incremental A/B phase (800 pulse/rotation)
Memory	EEPROM
LED indicator	LED (Green/Red) one of each
7-segment LED display Note 3)	1 digit, 7 -segment display (Red) Figures are expressed in hexadecimal. ("10" to "15" in decimal number are expressed as "A" to "F")
Lock control	Forced-lock release terminal Note 4)
Cable length [m]	I/O cable: 5 or less, Actuator cable: 20 or less
Cooling system	Natural air cooling
Operating temperature range [${ }^{\circ} \mathrm{C}$]	0 to 40 (No freezing)
Operating humidity range [\%RH]	90 or less (No condensation)
Storage temperature range [${ }^{\circ} \mathrm{C}$]	-10 to 60 (No freezing)
Storage humidity range [\%RH]	90 or less (No condensation)
Insulation resistance [M 2]	Between the housing and SG terminal: 50 (500 VDC)
Weight [g]	130 (Screw mounting), 150 (DIN rail mounting)

Note 1) Do not use the power supply of "inrush current prevention type" for the controller input power supply. When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.
Note 2) The power consumption changes depending on the actuator model. Refer to the each actuator's operation manual etc. for details.
Note 3) " 10 " to " 15 " in decimal number are displayed as follows in the 7 -segment LED.

Note 4) Applicable to non-magnetizing lock

Controller Details

No.	Display	Description	Details
(1)	PWR	Power supply LED	Power supply ON/Servo ON: Green turns on. Power supply ON/Servo OFF: Green flashes.
(2)	ALM	Alarm LED	With alarm : Red turns on. Parameter setting : Red flashes.
(3)	-	Cover	Change and protection of the mode switch (Close the cover after changing switch.)
(4)	-	FG	Frame ground (Tighten the screw with the washer when mounting the controller. Connect the ground wire.)
(5)	-	Mode switch	Switch the mode between manual and auto.
(6)	-	7-segment LED	Stop position, the value set by (8) and alarm information are displayed.
(7)	SET	Set button	Decide the settings or drive operation in manual mode.
(8)	-	Position selecting switch	Assign the position to drive (1 to 14), and the origin position (15).
(9)	MANUAL	Manual forward button	Perform forward jog and inching.
(10)		Manual reverse button	Perform reverse jog and inching.
(11)	SPEED	Forward speed switch	16 forward speeds are available.
(12)		Reverse speed switch	16 reverse speeds are available.
(13)	ACCEL	Forward acceleration switch	16 forward acceleration steps are available.
(14)		Reverse acceleration switch	16 reverse acceleration steps are available.
(15)	CN1	Power supply connector	Connect the power supply cable.
(16)	CN2	Motor connector	Connect the motor connector.
(17)	CN3	Encoder connector	Connect the encoder connector.
(18)	CN4	I/O connector	Connect the I/O cable.

How to Mount

Controller mounting shown below

1. Screw mounting (LECP2 $\square \square-\square$)

(Installation with two M4 screws)

Note) The space between the controllers should be 10 mm or more.

2. Grounding

Tighten the screw with the washer when mounting the ground wire as shown below.

Controller

\triangle Caution

\bullet M4 screws, cable with crimping terminal and tooth lock washer are not included. Be sure to carry out grounding earth in order to ensure the noise tolerance.

- Use a watchmaker's screwdriver of the size shown below when changing position switch (8) and the set value of the speed/acceleration switch (11) to (14).

Size

L: 2.0 to $2.4[\mathrm{~mm}]$
End width thickness W: 0.5 to $0.6[\mathrm{~mm}]$

Magnified view of the end of the screwdriver

Dimensions

Screw mounting (LEC $\square 2 \square \square-\square$)

DIN rail mounting (LEC $\square \mathbf{2} \square \square \mathrm{D}-\square$)

DIN rail
AXT100-DR- \square

* For \square, enter a number from the "No." line in the table below.
Refer to the dimensions above for the mounting dimensions.
L Dimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5
No.	15	16	17	18	19	20	21	22	23	24	25	26	27	28
\mathbf{L}	198	210.5	223	235.5	248	260.5	273	285.5	298	310.5	323	335.5	348	360.5
No.	28	29	30	31	32	33	34	35	36	37	38	39	40	
\mathbf{L}	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5	

DIN rail mounting adapter

LEC-1-D0 (with 2 mounting screws)

LECP2 Series

Wiring Example 1

Power Supply Connector: CN1
* When you connect a CN1 power supply connector, use the power supply cable (LEC-CK1-1).
* Power supply cable (LEC-CK1-1) is an accessory.

CN1 Power Supply Connector Terminal for LECP2

Terminal name	Cade colr	Function	Details
0V	Blue	Common supply (-)	M 24V terminal/C 24V terminal/BK RLS terminal are common (-).
M 24V	White	Motor power supply (+)	Motor power supply (+) supplied to the controller
C 24V	Brown	Control power supply (+)	Control power supply (+) supplied to the controller
BK RLS	Black	Lock release (+)	Input (+) for releasing the lock

Power supply cable for LECP2 (LEC-CK1-1)

Wiring Example 2

Parallel I/O Connector: CN4 * When you connect a PLC, etc., to the CN4 parallel I/O connector, use the I/O cable (LEC-CK4- \square).
■ NPN

		Power supply 24 VDC for I/O signal
CN4		
COM +	1	$\xrightarrow{\prime}$
COM -	2	
OUTO	3	Load
OUT1	4	Load
OUT2	5	Load
OUT3	6	Load
BUSY	7	Load
ALARM	8	Load
INO	9	
IN1	10	
IN2	11	
IN3	12	
RESET	13	
STOP	14	

Input Signal

Name	Details			
COM+	Connects the power supply 24 V for input/output signal			
COM-	Connects the power supply 0 V for input/output signal			
	- Instruction to drive (input as a combination of INO to IN3) Example - (instruction to drive for position no. 5)			
	IN3	IN2	IN1	INO
INO to IN3	OFF	ON	OFF	ON
	- Instruction to return to origin$\left(\begin{array}{l} \text { After the power is turned } \mathrm{ON} \text {, first turn on } \operatorname{INO} \text { or } \mathbb{I N 1 .} \\ \text { Return to origin using } \operatorname{INO} \text { : Return to origin by moving to the extended end. } \\ \text { Return to origin using } \operatorname{IN} 1 \text { : Return to origin by moving to the motor end. } \end{array}\right)$			
RESET	Alarm reset and operation interruption During operation: deceleration stop from position at which signal is input (servo ON maintained) While alarm is active: alarm reset			
STOP	Instruction to stop (after maximum deceleration stop, servo OFF)			

Input Signal [INO - IN3] Position Number Chart O: OFF ©: ON

Position number	IN3	IN2	IN1	IN0
1 (End side)	\bigcirc	\bigcirc	\bigcirc	-
2 (Motor side)	\bigcirc	\bigcirc	\bullet	\bigcirc
3	\bigcirc	\bigcirc	-	-
4	\bigcirc	\bullet	\bigcirc	\bigcirc
5	\bigcirc	-	\bigcirc	-
6	\bigcirc	\bullet	\bullet	\bigcirc
7	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	-	\bigcirc	\bigcirc	\bigcirc
9	-	\bigcirc	\bigcirc	-
10 (A)	\bigcirc	\bigcirc	-	\bigcirc
11 (B)	-	\bigcirc	-	-
12 (C)	\bigcirc	-	\bigcirc	\bigcirc
13 (D)	-	-	\bigcirc	-
14 (E)	\bullet	-	\bullet	\bigcirc

PNP

CN4		Power supply 24 VDC	
COM +	1		\square
COM-	2		
OUT0	3	Load	-
OUT1	4	Load	-
OUT2	5	Load	
OUT3	6	Load	-
BUSY	7	Load	
ALARM	8	Load	
ino	9		
IN1	10		
IN2	11		
IN3	12		
RESET	13		
STOP	14		

Output Signal

Name	Details			
	- Positioning completion (input as a combination of OUT0 to OUT3) Example - (positioning completion for position no. 3)			
	OUT3	OUT2	OUT1	OUT0
OUTO to OUT3	OFF	OFF	ON	ON
	- Return to origin completion $\binom{$ Completion of return to origin using IN0: Only OUTO is ON. }{ Completion of return to origin using IN1: Only OUT1 is ON. }			
BUSY	Outputs when the actuator is moving			
*ALARM ${ }^{\text {Note) }}$	Not output when alarm is active or servo OFF			

Note) Signal of negative-logic circuit (N.C.)

Output Signal [OUTO - OUT3] Position Number Chart O: OFF ©: ON

Position number	OUT3	OUT2	OUT1	OUT0
1 (End side)	\bigcirc	\bigcirc	\bigcirc	-
2 (Motor side)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8	-	\bigcirc	\bigcirc	\bigcirc
9	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10 (A)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
11 (B)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
12 (C)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
13 (D)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14 (E)	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Signal Timing
(1) Positioning Operation [Driving to the stroke end]

(2) Positioning Operation [Driving to the intermediate position]

(3) Cut-off Stop (Reset Stop)

(4) Stop by the STOP Signal

(5) Alarm Reset

[^4]
LECP2 Series

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]
Weight

Product no.	Weight [g]	Note
LE-CP-1-S	190	Standard cable
LE-CP-3-S	280	
LE-CP-5-S	460	
LE-CP-1	140	
LE-CP-3	260	
LE-CP-5	420	Robotic cable
LE-CP-8	790	
LE-CP-A	980	
LE-CP-B	1460	
LE-CP-C	1940	

Signal	Connector A terminal no.		Cable color	Connector C terminal no.
A	B-1		Brown	2
$\overline{\mathrm{A}}$	A-1		Red	1
B	B-2		Orange	6
\bar{B}	A-2		Yellow	5
COM-A/COM	B-3		Green	3
COM-B/-	A-3		Blue	4
		Shield	Cable color	Connector D terminal no.
Vcc	B-4	i'	Brown	12
GND	A-4	$1 \times \times \sim 1$	Black	13
$\overline{\mathrm{A}}$	B-5		Red	7
A	A-5	1	Black	6
\bar{B}	B-6	\cdots -	Orange	9
B	A-6	',	Black	8
			-	3

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]

| C | 20^{*} |
| :---: | :---: | order (Robotic cable only)

With lock and sensor
Cable type

Nil	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

Weight

Product no.	Weight [g]	Note
LE-CP-1-B-S	240	Standard cable
LE-CP-3-B-S	380	
LE-CP-5-B-S	630	
LE-CP-1-B	190	Robotic cable
LE-CP-3-B	360	
LE-CP-5-B	590	
LE-CP-8-B	1060	
LE-CP-A-B	1320	
LE-CP-B-B	1920	
LE-CP-C-B	2620	

Signal	Connector A terminal no.		Cable color	Connector C terminal no.
A	B-1		Brown	2
$\overline{\mathrm{A}}$	A-1		Red	1
B	B-2		Orange	6
\bar{B}	A-2		Yellow	5
COM-A/COM	B-3		Green	3
COM-B/-	A-3	S--- Shield	Blue	4
			Cable color	Connector D terminal no.
Vcc	B-4		Brown	12
GND	A-4		Black	13
$\overline{\mathrm{A}}$	B-5	1	Red	7
A	A-5	1	Black	6
\bar{B}	B-6	$\xrightarrow[\prime]{\prime}$	Orange	9
B	A-6		Black	8
Signal	Connector B terminal no.		-	3
Lock (+)	B-1		Red	4
Lock (-)	A-1		Black	5
Sensor (+)	B-3		Brown	1
Sensor (-)	A-3		Blue	2

Options

[Power supply cable]
LEC-CK1-1

Temminal name	Covered color	Function
OV	Blue	Common supply (-)
M 24V	White	Motor power supply (+)
C 24V	Brown	Control power supply (+)
BK RLS	Black	Lock release (+)

[I/O cable]

LEC - CKA - Cable length (L) [m] | 1 | 1.5 |
| :---: | :---: |
| 3 | 3 |
| 5 | 5 |

Terminal no.	Insulation color	Dot mark	Dot color	Function
1	Light brown	■	Black	COM+
2	Light brown	\square	Red	COM-
3	Yellow	\square	Black	OUTO
4	Yellow	\square	Red	OUT1
5	Light green	\square	Black	OUT2
6	Light green	\square	Red	OUT3
7	Gray	\square	Black	BUSY
8	Gray	\square	Red	ALARM
9	White	\square	Black	INO
10	White	\square	Red	IN1
11	Light brown	■ ■	Black	IN2
12	Light brown	■ ■	Red	IN3
13	Yellow	■ ■	Black	RESET
14	Yellow	■■	Red	STOP

* Conductor size: AWG26

Weight

Product no.	Weight [g]
LEC-CK4-1	100
LEC-CK4-3	200
LEC-CK4-5	330

[^5]
\triangle Caution

[CE-compliant products]

(1) EMC compliance was tested by combining the electric actuator LE series and the LECPA series. The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) For the LECPA series (step motor driver), EMC compliance was tested by installing a noise filter set (LEC-NFA).
Refer to page 568 for the noise filter set. Refer to the LECPA Operation Manual for installation.

[UL-compliant products]

When conformity to UL is required, the electric actuator and driver should be used with a UL1310 Class 2 power supply.

Note) The dedicated software (LEC-BCW) is required.

* When controller equipped type is selected when ordering the LE series, you do not need to order this driver. * When pulse signals are open collector, order the current limiting resistor (LEC-PA-R- \square) separately.

The driver is sold as single unit after the compatible actuator is set.

Confirm that the combination of the driver and the actuator is correct.

<Check the following before use.>

(1) Check the actuator label for model number. This matches the driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

* Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

Precautions on blank controller (LECPA $\square \square-B C)$

Blank controller is a controller to which the customer can write the data of the actuator to be combined and used. Use the dedicated software (LEC-BCW) for data writing.

- Please download the dedicated software (LEC-BCW) via our website.
- Order the communication cable for controller setting (LEC-W2A-C) separately to use this software.

SMC website
https://www.smcworld.com

Specifications

Item	LECPA
Compatible motor	Step motor (Servo/24 VDC)
Power supply Note 1)	Power voltage: 24 VDC $\pm 10 \%$ Note 2) [Including motor drive power, control power, stop, lock release]
Parallel input	5 inputs (Except photo-coupler isolation, pulse input terminal, COM terminal)
Parallel output	9 outputs (Photo-coupler isolation)
Pulse signal input	Maximum frequency: 60 kpps (Open collector), 200 kpps (Differential) Input method: 1 pulse mode (Pulse input in direction), 2 pulse mode (Pulse input in differing directions)
Compatible encoder	Incremental A/B phase (Encoder resolution: 800 pulse/rotation)
Serial communication	RS485 (Modbus protocol compliant)
Memory	EEPROM
LED indicator	LED (Green/Red) one of each
Lock control	Forced-lock release terminal ${ }^{\text {Note } 3)}$
Cable length [m]	I/O cable: 1.5 or less (Open collector), 5 or less (Differential), Actuator cable: 20 or less
Cooling system	Natural air cooling
Operating temperature range [${ }^{\circ} \mathrm{C}$]	0 to 40 (No freezing)
Operating humidity range [\%RH]	90 or less (No condensation)
Storage temperature range [${ }^{\circ} \mathrm{C}$]	-10 to 60 (No freezing)
Storage humidity range [\%RH]	90 or less (No condensation)
Insulation resistance [$\mathrm{M} \Omega$]	Between the housing and SG terminal: 50 (500 VDC)
Weight [g]	120 (Screw mounting), 140 (DIN rail mounting)

Note 1) Do not use the power supply of "inrush current prevention type" for the Note 2) The power consumption changes depending on the actuator driver power supply. When conformity to UL is required, the electric actuator and driver should be used with a UL1310 Class 2 power supply.

How to Mount

Note) The space between the drivers should be 10 mm or more.

DIN rail

AXT100-DR- \square

* For \square, enter a number from the "No." line in the table below. Refer to the dimensions on page 592 for the mounting dimensions.

L Dimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

DIN rail mounting adapter

LEC-2-D0 (with 2 mounting screws)

This should be used when the DIN rail mounting adapter is mounted onto the screw mounting type driver afterwards.

LECPA Series

Dimensions
a) Screw mounting (LECPA $\square \square-\square$)

Wiring Example 1

Power Supply Connector: CN1 * Power supply plug is an accessory. <Applicable cable size> AWG20 ($0.5 \mathrm{~mm}^{2}$), cover diameter 2.0 mm or less CN1 Power Supply Connector Terminal for LECPA (PHOENIX CONTACT FK-MC0.5/5-ST-2.5)

Terminal name	Function	Details
0 V	Common supply (-)	M 24V terminal/C 24V terminal/EMG terminal/BK RLS terminal are common (-).
M 24V	Motor power supply (+)	Motor power supply (+) supplied to the driver
C 24V	Control power supply (+)	Control power supply (+) supplied to the driver
EMG	Stop (+)	Input (+) for releasing the stop
BK RLS	Lock release (+)	Input (+) for releasing the lock

Power supply plug for LECPA: LEC-D-1-1

Wiring Example 2
Parallel I/O Connector: CN5 * When you connect a PLC, etc., to the CN5 parallel I/O connector, please use the I/O cable (LEC-CL5-D).
Parallel I/O Connector: CN5 * The wiring should be changed depending on the type of the parallel I/O (NPN or PNP).

LECPAN $\square \square-\square$ (NPN)

Note 1) For pulse signal wiring method, refer to "Pulse Signal Wiring Details". Note 2) Output when the power supply of the driver is ON. (N.C.)

Input Signal

Name	Details
COM +	Connects the power supply 24 V for input/output signal
COM-	Connects the power supply 0 V for input/output signal
SETUP	Instruction to return to origin
RESET	Alarm reset
SVON	Servo ON instruction
CLR	Deviation reset
TL	Instruction to pushing operation

Pulse Signal Wiring Details

-Pulse signal output of positioning unit is differential output

- Pulse signal output of positioning unit is open collector output

Pulse signal power supply

Note) Connect the current limiting resistor R in series to correspond to the pulse signal voltage.

Pulse signal power supply voltage	Current limiting resistor R specifications	Current limiting resistor part no.
$24 \mathrm{VDC} \pm 10 \%$	$3.3 \mathrm{k} \Omega \pm 5 \%$ $(0.5 \mathrm{~W}$ or more)	LEC-PA-R-332
$5 \mathrm{VDC} \pm 5 \%$	$390 \Omega \pm 5 \%$ $(0.1 \mathrm{~W}$ or more) $)$	LEC-PA-R-391

LECPA Series

Signal Timing

Return to Origin

* "*ALARM" and "*ESTOP" are expressed as negative-logic circuit.

Positioning Operation

Pushing Operation

Note) If pushing operation is stopped when there is no pulse deviation, the moving part of the actuator may pulsate.

Alarm Reset

[^6]

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]

Nil	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

LE-CP- ${ }_{5}^{-1}$ /Cable length: $\mathbf{1 . 5 ~ m , 3 ~ m , 5 ~ m ~}$

(* Produced upon receipt of order)

LECPA Series

Options

[I/O cable]

* Pulse input usable only with differential. Only 1.5 m cables usable with open collector.

[Noise filter set]

Step Motor Driver (Pulse Input Type)

LEC-NFA

Contents of the set: 2 noise filters
(Manufactured by WURTH ELEKTRONIK: 74271222)

[^7]| Pin no. | Insulation color | Dot mark | Dot color |
| :---: | :---: | :---: | :---: |
| 1 | Light brown | \square | Black |
| 2 | Light brown | \square | Red |
| 3 | Yellow | \square | Black |
| 4 | Yellow | \square | Red |
| 5 | Light green | \square | Black |
| 6 | Light green | \square | Red |
| 7 | Gray | \square | Black |
| 8 | Gray | \square | Red |
| 9 | White | \square | Black |
| 10 | White | \square | Red |
| 11 | Light brown | ■ | Black |

Pin no.	Insulation color	Dot mark	Dot color
12	Light brown	■	Red
13	Yellow	■	Black
14	Yellow	■	Red
15	Light green	■	Black
16	Light green	-	Red
17	Gray	■	Black
18	Gray	■!	Red
19	White	■	Black
20	White	■■	Red
$\begin{gathered} \text { Round temina } \\ 0.5-5 \end{gathered}$	Green		

Weight

Product no.	Weight $[\mathrm{g}]$
LEC-CL5-1	190
LEC-CL5-3	370
LEC-CL5-5	610

[Current limiting resistor]

This optional resistor (LEC-PA-R- \square) is used when the pulse signal output of the positioning unit is open collector output.

LEC-PA-R-ㅁ

Current limiting resistor 0

Symbol	Resistance	Pulse signal power supply voltage
$\mathbf{3 3 2}$	$3.3 \mathrm{k} \Omega \pm 5 \%$	24 VDC $\pm 10 \%$
$\mathbf{3 9 1}$	$390 \Omega \pm 5 \%$	$5 \mathrm{VDC} \pm 5 \%$

* Select a current limiting resistor that corresponds to the pulse signal power supply voltage.
* For the LEC-PA-R- \square, two pieces are shipped as a set.
* For pulse signal wiring details, refer to page 593.

LEC Series

Communication Cable for Controller Setting/LEC-W2A- \square

Compatible Controller/Driver

Step data input type	LECP6 Series/LECA6 Series
Pulse input type	LECPA Series
cC-Link direct input type	LECPMJ Series
Step Motor Controller	JXCE1/91/P1/D1/L1 Series

* When connecting to a JXCE1/91/P1/D1/L1 series product, use a conversion cable (P5062-5) as a relay.

Hardware Requirements

OS	Windows $^{\circledR} 7$, Windows ${ }^{\circledR} 8.1$, Windows $^{\circledR 10} 10$
Communication interface	USB 1.1 or USB 2.0 ports
Display	1024×768 or more

* Windows ${ }^{\circledR 7}$, Windows ${ }^{\circledR 8.1}$ and Windows ${ }^{\circledR 10}$ are registered trademarks of Microsoft Corporation in the United States.

Screen Example

Easy mode screen example

Easy operation and simple setting

- Allowing to set and display actuator step data such as position, speed, force, etc.
- Setting of step data and test drive can be performed on the same page.
- Can be used to jog and move at a constant rate.

Normal mode screen example

Detailed setting

- Step data can be set in detail.
- Signals and terminal status can be monitored.
- Parameters can be set.
- JOG and constant rate movement, return to origin, test drive and testing of forced output can be performed.

LEC Series
 Teaching Box/LEC-T1

How to Order

Standard functions

- Chinese character display
- Stop switch is provided.

Option

- Enable switch is provided.

* The displayed language can be changed to English or Japanese.

Specifications

Item	Description
Switch	Stop switch, Enable switch (Option)
Cable length [m]	3
Enclosure	IP64 (Except connector)
Operating temperature range $\left[{ }^{\circ} \mathbf{C}\right]$	5 to 50
Operating humidity range [\%RH]	90 or less (No condensation)
Weight [g]	350 (Except cable)

[CE-compliant products]
The EMC compliance of the teaching box was tested with the LECP6 series step motor controller (servo/24 VDC) and an applicable actuator.
[UL-compliant products]
When conformity to UL is required, the electric actuator and driver should be used with a UL1310 Class 2 power supply.

Easy Mode

Function	Details
Step data	- Setting of step data
Jog	- Jog operation - Return to origin
Test	- 1 step operation Note 1) - Return to origin
Monitor	- Display of axis and step data no. - Display of two items selected from Position, Speed, Force.
ALM	- Active alarm display - Alarm reset
TB setting	- Reconnection of axis (Ver. 1.**) - Displayed language setting (Ver. 2.**)
- Setting of easy/normal mode - Setting step data and selection of items from easy mode monitor	

Menu Operations Flowchart

Menu	Data
Data Monitor Jog Test ALM TB setting	Step data no. Setting of two items selected below Ver. 1.**: Position, Speed, Force, Acceleration, Deceleration Ver. 2.**: Position, Speed, Pushing force, Acceleration, Deceleration, Movement MOD, Trigger LV, Pushing speed, Moving force, Area 1, Area 2, In position
	Monitor
	Display of step no. Display of two items selected below (Position, Speed, Force)
	Jog
	Return to origin Jog operation
	Test ${ }^{\text {Note 1) }}$
	1 step operation
	ALM
	Active alarm display Alarm reset
	TB setting
	Reconnect (Ver. 1.**) Japanese/English (Ver. 2.**) Easy/Normal Set item

Normal Mode

Function	Details
Step data	- Step data setting
Parameter	- Parameters setting
Test	- Jog operation/Constant rate movement - Return to origin - Test drive Note 1) (Specify a maximum of 5 step data and operate.) - Forced output (Forced signal output, Forced terminal output) Note 2)
Monitor	- Drive monitor - Output signal monitor Note 2) - Input signal monitor Note 2) - Output terminal monitor - Input terminal monitor
ALM	- Active alarm display (Alarm reset) - Alarm log record display
File	- Data saving Save the step data and parameters of the driver which is being used for communication (it is possible to save four files, with one set of step data and parameters defined as one file). - Load to driver Loads the data which is saved in the teaching box to the driver which is being used for communication. - Delete the saved data. - File protection (Ver. 2.**)
TB setting	- Display setting (Easy/Normal mode) - Language setting (Japanese/English) - Backlight setting - LCD contrast setting - Beep sound setting - Max. connection axis - Distance unit (mm/inch)
Reconnect	- Reconnection of axis

Menu Operations Flowchart

Note 1) Not compatible with the LECPA.
Note 2) The following signals are compatible with LECPA with TB Ver. 2.10 or newer.

Input: CLR, TL
Output: TLOUT

Dimensions

No.	Description	Function
$\mathbf{1}$	LCD	A screen of liquid crystal display (with backlight)
$\mathbf{2}$	Ring	A ring for hanging the teaching box
$\mathbf{3}$	Stop switch	When switch is pushed in, the switch locks and stops. The lock is released when it is turned to the right.
$\mathbf{4}$	Stop switch guard	A guard for the stop switch
$\mathbf{5}$	Enable switch (Option)	Prevents unintentional operation (unexpected operation) of the jog test function. Other functions such as data change are not covered.
$\mathbf{6}$	Key switch	Switch for each input
$\mathbf{7}$	Cable	Length: 3 meters
$\mathbf{8}$	Connector	A connector connected to CN4 of the driver

ROHS

How to Order

Communication plug connectior

* Part number that is used when ordering the communication plug connector individually.

Connector type

S	Straight type
T	T-branch type

Straight type
LEC-CMJ-S

T-branch type LEC-CMJ-T

The controller is sold as single unit after the compatible actuator is set.
Confirm that the combination of the controller and the actuator is correct.
(1) Check the actuator label for model number. This matches the controller.

* Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

Precautions on blank controller (LECPMJ $\square \square$-BC)

Blank controller is a controller to which the customer can write the data of the actuator to be combined and used. Use the dedicated software (LEC-BCW) for data writing.

- Please download the dedicated software (LEC-BCW) via our website.
- Order the communication cable for controller setting (LEC-W2A-C) separately to use this software.

SMC website: https://www.smcworld.com

Step Motor Controller (CC-Link Direct Input Type)

Specifications

Item			LECPMJ				
Compatible motor			Step motor (Servo/24 VDC)				
Power supply Note 1)			Power voltage: 24 VDC $\pm 10 \%$ Note 2)				
Compatible encoder			Incremental A/B phase (800 pulse/rotation)				
	Fieldbus		CC-Link Ver. 1.10				
	Communication speed [bps]		$156 \mathrm{k} / 625 \mathrm{k} / 2.5 \mathrm{M} / 5 \mathrm{M} / 10 \mathrm{M}$				
	Communication method		Broadcast polling				
	Station type		Remote device station				
	I/O occupation area		1 station$\binom{$ Input 32 points $/ 4$ words }{ Output 32 points $/ 4$ words }		$\left(\begin{array}{c} \text { Input } \\ \text { Output } \end{array}\right.$	words words)	$\begin{gathered} 4 \text { stations } \\ \binom{\text { Input } 128 \text { points/16 words }}{\text { Output } 128 \text { points/16 words }} \end{gathered}$
	Applicable communication cable		CC-Link Ver. 1.10 compliant cable (Shielded 3-core twisted pair cable) ${ }^{\text {Note 3) }}$				
	Maximum cable length	Communication speed [bps]	156 k	625 k	2.5 M	5 M	10 M
		Total cable length [m]	1200	900	400	160	100
Serial communication			RS485 (Modbus protocol)				
Memory			EEPROM				
LED indicator			PWR, ALM, L ERR, L RUN				
Lock control			Forced-lock release terminal Note 4)				
Cable length [m]			Actuator cable: 20 or less				
Cooling system			Natural air cooling				
Operating temperature range [${ }^{\mathrm{C}}$]			0 to 40 (No freezing)				
Operating humidity range [\%RH]			90 or less (No condensation)				
Storage temperature range [${ }^{\mathrm{C}}$]			-10 to 60 (No freezing)				
Storage humidity range [\%RH]			90 or less (No condensation)				
Insulation resistance [M Ω]			Between all of external terminals and the case$50 \text { (500 VDC) }$				
Weight [g]		ody	170 (Screw mounting), 190 (DIN rail mounting)				
		Communication plug connector	10 (Straight type), 20 (T-branch type)				

Note 1) Do not use the power supply of "inrush current prevention type" for the controller power supply.
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.
Note 2) The power consumption changes depending on the actuator model. Refer to the specifications of actuator for more details.
Note 3) If the system comprises of both CC-Link Ver. 1.00 and Ver. 1.10 compliant cables, Ver. 1.00 specifications are applied to the maximum communication cable length and the cable length between stations.
Note 4) Applicable to non-magnetizing lock

Mode explanation

Mode type	Description
Single numeric parameter	Can define numerical data in the Movement MOD and another item in the step data directly from the PLC when starting operation by specifying a registered step data No.
Half numeric parameters	Can define numerical data in the Movement MOD, Speed, Position, Acceleration/Pushing force, Pushing speed, or Deceleration/ Trigger LV in the step data directly from the PLC when starting operation by specifying a registered step data No.
Full numeric parameters	Can define numerical data in all step data items, Movement MOD, Speed, Position, Acceleration, Pushing speed, Pushing force, Deceleration, Trigger LV, Moving force, Area 1, Area 2, and In position, directly from the PLC to start operation.

Function that can be executed in each mode

Mode setting [Number of occupied stations] ${ }^{\text {Note } 5 \text {) }}$	Single numeric parameter [1]	Half numeric parameters [2]	Full numeric parameters [4]
Step no. defining operation	\bigcirc		
Numerical data defining operation	\bigcirc		
Number of definable numerical data items	1	6	12
Monitor of position/speed	\bigcirc		
Step data editing	$\bigcirc^{\text {Note 6) }}$		
Max. number of connectable controllers ${ }^{\text {Note } 7)}$	42	32	16

Note 5) The modes can be set by registering the number of occupied stations with basic parameter "Option setting 1" of the controller.
Note 6) It is possible to edit it from teaching box/controller setting software for "Single numeric parameter". It is possible to edit it from teaching box/ controller setting software and PLC (CC-Link) for "Half numeric parameters" and "Full numeric parameters".
Note 7) Maximum number of units specified in CC-Link communication specifications.

LECPMJ Series

Specifications

Modifiable step data item in each mode

- Numerical data modifiable items

Mode setting	Step data item											
	$\begin{aligned} & \text { Movement } \\ & \text { MOD } \end{aligned}$	Speed	Position	Acceleration	Pushing force	Pushing speed	Deceleration	Trigger LV	Moving force	Area 1	Area 2	$\stackrel{\text { In }}{\text { position }}$
Single numeric parameter	-					Only one item ranging	can be changed tom Speed to In	from 11 items, position.				
Half numeric parameters	\bullet	\bullet	-	Only one item can Acceleration	be changed from ushing force.	-	Only one item can Deceleration	$\xrightarrow{\xrightarrow[n]{n \text { be changed from }}}$				
Full numeric parameters	-	-	-	-	-	-	-	-	-	-	-	-

Note) Step data items, except items that have been changed, reference data registered in the controller.
Note) Refer to the LECPMJ operation manual for details of the step data items.

Operation example: Single numeric parameter

[Step data registered in LECPMJ]

No.	Movement MOD	Speed	Position	Acceleration	Deceleration	Pushing force	Trigger LV	Pushing speed	Moving force	Area 1	Area 2	In position
0	1: Absolute	100	10	3000	3000	0	0	0	100	0	0	0.50
1	1: Absolute	100	100	3000	3000	0	0	0	100	0	0	0.50
2	1: Absolute	100	200	3000	3000	0	0	0	100	0	0	0.50

Note) The step data input range changes depending on the actuator model. For details, refer to the operation manual for actuator.
Note) To register the step data, use the controller setting software, teaching box, or data editing function of the LECPMJ.

Controller
[LECPMJ]

Step Motor Controller (CC-Link Direct Input Type)

Dimensions

DIN rail

AXT100-DR- \square

* For \square, enter a number from the "No." line in the table below Refer to the dimensions above for the mounting dimensions

L Dimension [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

Wiring Example

Power Supply Connector: CN1
CN1 Power Supply Connector Terminal for LECPMJ (PHOENIX CONTACT FK-MC0.5/5-ST-2.5)

Terminal name	Function	Details
0 V	Common supply (-)	M 24V terminal/C 24V terminal/EMG terminal/BK RLS terminal are common (-).
M 24V	Motor power supply (+)	Motor power supply (+) supplied to the driver
C 24V	Control power supply (+)	Control power supply (+) supplied to the driver
EMG	Stop (+)	Input (+) for releasing the stop
BK RLS	Lock release (+)	Input (+) for releasing the lock

Power supply plug for LECPMJ: LEC-D-1-1

LECPMJ Series

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]
LE - CP - $\mathbf{1}$
Cable length (L) [m]

$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	8^{*}
A	10^{*}
B	15^{*}
\mathbf{C}	20^{*}

* Produced upon receipt of order (Robotic cable only)

Cable typed

Nil	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

Weight

Product no.	Weight [g]	Note
LE-CP-1-S	190	Standard cable
LE-CP-3-S	280	
LE-CP-5-S	460	
LE-CP-1	140	Robotic cable
LE-CP-3	260	
LE-CP-5	420	
LE-CP-8	790	
LE-CP-A	980	
LE-CP-B	1460	
LE-CP-C	1940	

LE-CP- ${ }_{5}^{1} /$ Cable length: $1.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$

LE-CP- ${ }_{\text {A C }}^{\mathrm{C}}$ /Cable length: $\mathbf{8 \mathrm { m } , 1 0 \mathrm { m } , 1 5 \mathrm { m } , 2 0 \mathrm { m }}$
(* Produced upon receipt of order)

Signal	Connector A terminal no.		Cable color	Connector C terminal no.
A	B-1		Brown	2
$\overline{\text { A }}$	A-1		Red	1
B	B-2		Orange	6
\bar{B}	A-2		Yellow	5
COM-A/COM	B-3		Green	3
COM-B/-	A-3		Blue	4
		Shield	Cable color	Connector D terminal no.
Vcc	B-4	-	Brown	12
GND	A-4	$1 \times \times 1$	Black	13
$\overline{\mathrm{A}}$	B-5	1	Red	7
A	A-5		Black	6
$\overline{\mathrm{B}}$	B-6	1-1	Orange	9
B	A-6		Black	8
			-	3

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]

LEC Series

Communication Cable for Controller Setting/LEC-W2A- \square

Compatible Controller/Driver

Step data input type	LECP6 Series/LECA6 Series
Pulse input type	LECPA Series
cC-Link direct input type	LECPMJ Series
Step Motor Controller	JXCE1/91/P1/D1/L1 Series

* When connecting to a JXCE1/91/P1/D1/L1 series product, use a conversion cable (P5062-5) as a relay.

Hardware Requirements

OS	Windows $^{\circledR} 7$, Windows $^{\circledR} 8.1$, Windows $^{\circledR 1} 10$
Communication interface	USB 1.1 or USB 2.0 ports
Display	1024×768 or more
$*$	
$*$	

Screen Example

Easy mode screen example

Easy operation and simple setting

- Allowing to set and display actuator step data such as position, speed, force, etc.
- Setting of step data and test drive can be performed on the same page.
- Can be used to jog and move at a constant rate.

Normal mode screen example

Detailed setting

- Step data can be set in detail.
- Signals and terminal status can be monitored.
- Parameters can be set.
- JOG and constant rate movement, return to origin, test drive and testing of forced output can be performed.

LEC Series
 Teaching Box/LEC-T1

RoHS

How to Order

Standard functions

- Chinese character display
- Stop switch is provided.

Option

- Enable switch is provided.

* The displayed language can be changed to English or Japanese.

Specifications

Item	Description
Switch	Stop switch, Enable switch (Option)
Cable length [m]	3
Enclosure	IP64 (Except connector)
Operating temperature range $\left[{ }^{\circ} \mathbf{C}\right]$	5 to 50
Operating humidity range [\%RH]	90 or less (No condensation)
Weight [g]	350 (Except cable)

[CE-compliant products]
The EMC compliance of the teaching box was tested with the LECP6 series step motor controller (servo/24 VDC) and an applicable actuator.
[UL-compliant products]
When conformity to UL is required, the electric actuator and driver should be used with a UL1310 Class 2 power supply.

Easy Mode

Function	Details
Step data	- Setting of step data
Jog	- Jog operation - Return to origin
Test	- 1 step operation Note 1) - Return to origin
Monitor	- Display of axis and step data no. - Display of two items selected from Position, Speed, Force.
ALM	- Active alarm display - Alarm reset
TB setting	- Reconnection of axis (Ver. 1.**) - Displayed language setting (Ver. 2.**)
- Setting of easy/normal mode - Setting step data and selection of items from easy mode monitor	

Menu Operations Flowchart

Menu	Data
Data Monitor Jog Test ALM TB setting	Step data no. Setting of two items selected below Ver. 1.**: Position, Speed, Force, Acceleration, Deceleration Ver. 2.**: Position, Speed, Pushing force, Acceleration, Deceleration, Movement MOD, Trigger LV, Pushing speed, Moving force, Area 1, Area 2, In position
	Monitor
	Display of step no. Display of two items selected below (Position, Speed, Force)
	Jog
	Return to origin Jog operation
	Test ${ }^{\text {Note 1) }}$
	1 step operation
	ALM
	Active alarm display Alarm reset
	TB setting
	Reconnect (Ver. 1.**) Japanese/English (Ver. 2.**) Easy/Normal Set item

Normal Mode

Function	Details
Step data	- Step data setting
Parameter	- Parameters setting
Test	- Jog operation/Constant rate movement - Return to origin - Test drive Note 1) (Specify a maximum of 5 step data and operate.) - Forced output (Forced signal output, Forced terminal output) Note 2)
Monitor	- Drive monitor - Output signal monitor Note 2) - Input signal monitor Note 2) - Output terminal monitor - Input terminal monitor
ALM	- Active alarm display (Alarm reset) - Alarm log record display
File	- Data saving Save the step data and parameters of the driver which is being used for communication (it is possible to save four files, with one set of step data and parameters defined as one file). - Load to driver Loads the data which is saved in the teaching box to the driver which is being used for communication. - Delete the saved data. - File protection (Ver. 2.**)
TB setting	- Display setting (Easy/Normal mode) - Language setting (Japanese/English) - Backlight setting - LCD contrast setting - Beep sound setting - Max. connection axis - Distance unit (mm/inch)
Reconnect	- Reconnection of axis

Menu Operations Flowchart

Note 1) Not compatible with the LECPA.
Note 2) The following signals are compatible with LECPA with TB Ver. 2.10 or newer.

Input: CLR, TL
Output: TLOUT

Dimensions

No.	Description	Function
$\mathbf{1}$	LCD	A screen of liquid crystal display (with backlight)
$\mathbf{2}$	Ring	A ring for hanging the teaching box
$\mathbf{3}$	Stop switch	When switch is pushed in, the switch locks and stops. The lock is released when it is turned to the right.
$\mathbf{4}$	Stop switch guard	A guard for the stop switch
$\mathbf{5}$	Enable switch (Option)	Prevents unintentional operation (unexpected operation) of the jog test function. Other functions such as data change are not covered.
$\mathbf{6}$	Key switch	Switch for each input
$\mathbf{7}$	Cable	Length: 3 meters
$\mathbf{8}$	Connector	A connector connected to CN4 of the driver

LEL LEM

Step Motor Controller JXCE1/91/P1/D1/L1 Series (\in © ${ }^{\text {an }}$

RoHS

How to Order

The controller is sold as single unit after the compatible actuator is set.
Confirm that the combination of the controller and the actuator is correct.
(1) Check the actuator label for model number. This matches the controller.

* Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

Precautions on blank controller (JXC $\square 1 \square \square-\mathrm{BC}$)

Blank controller is a controller to which the customer can write the data of the actuator to be combined and used. Use the dedicated software (JXC-BCW) for data writing.

- Please download the dedicated software (JXC-BCW) via our website.
- Order the communication cable for controller setting (JXC-W2A-C) and USB cable (LEC-W2-U) separately to use this software.

SMC website: https://www.smcworld.com

Step Motor Controller JXCE1／91／P1／D1／L1－XZ23 Series

Operating temperature range： 0 to $55^{\circ} \mathrm{C}$

Communication protocol：
EtherCAT．
PR무뭅
－田自宁
Deviceilet
Etheri＇et／IP
© IO－Link

How to Order

Specifications

Model	JXC $\square 1-$ XZ23
Operating temperature range $\left[{ }^{\circ} \mathrm{C}\right]$	0 to 55 （No freezing）

Specifications

Model			JXCE1	JXC91	JXCP1	JXCD1	JXCL1
Network			EtherCAT ${ }^{\circledR}$	EtherNet/IP ${ }^{\text {TM }}$	PROFINET	DeviceNet ${ }^{\text {TM }}$	IO-Link
Compatible motor			Step motor (Servo/24 VDC)				
Power supply			Power voltage: $24 \mathrm{VDC} \pm 10 \%$				
Current consumption (Controller)			200 mA or less	130 mA or less	200 mA or less	100 mA or less	100 mA or less
Compatible encoder			Incremental A/B phase (800 pulse/rotation)				
		Protocol	EtherCAT ${ }^{\text {®*2 }}$	EtherNet/IP ${ }^{\text {TM }}$ *	PROFINET*2	DeviceNet ${ }^{\text {TM }}$	IO-Link
	Applicable system	Version*1	Conformance Test Record V.1.2.6	Volume 1 (Edition 3.14) Volume 2 (Edition 1.15)	Specification Version 2.32	Volume 1 (Edition 3.14) Volume 3 (Edition 1.13)	$\begin{gathered} \hline \text { Version } 1.1 \\ \text { Port Class A } \\ \hline \end{gathered}$
	Communication speed		$100 \mathrm{Mbps*2}$	$\begin{array}{\|c\|} \hline 10 / 100 \mathrm{Mbps}^{* 2} \\ \text { (Automatic negotiation) } \\ \hline \end{array}$	100 Mbps*2	125/250/500 kbps	$\begin{gathered} 230.4 \mathrm{kbps} \\ \text { (COM3) } \\ \hline \end{gathered}$
	Configuration file*3		ESI file	EDS file	GSDML file	EDS file	IODD file
	I/O occupation area		Input 20 bytes Output 36 bytes	Input 36 bytes Output 36 bytes	Input 36 bytes Output 36 bytes	Input 4, 10, 20 bytes Output 4, 12, 20, 36 bytes	Input 14 bytes Output 22 bytes
	Terminating resistor		Not included				
Memory			EEPROM				
LED indicator			PWR, RUN, ALM, ERR	PWR, ALM, MS, NS	PWR, ALM, SF, BF	PWR, ALM, MS, NS	PWR, ALM, COM
Cable length [m]			Actuator cable: 20 or less				
Cooling system			Natural air cooling				
Operating temperature range [${ }^{\circ} \mathrm{C}$]			0 to 55 (No freezing)*4				
Operating humidity range [\%RH]			90 or less (No condensation)				
Insulation resistance [$\mathrm{M} \Omega$]			Between all external terminals and the case 50 (500 VDC)				
Weight [g]			220 (Screw mounting) 240 (DIN rail mounting)	210 (Screw mounting) 230 (DIN rail mounting)	220 (Screw mounting) 240 (DIN rail mounting)	210 (Screw mounting) 230 (DIN rail mounting)	190 (Screw mounting) 210 (DIN rail mounting)

*1 Please note that versions are subject to change.
*2 Use a shielded communication cable with CAT5 or higher for the PROFINET, EtherNet/IPTM, and EtherCAT ${ }^{\circledR}$.
*3 The files can be downloaded from the SMC website: http://www.smcworld.com
*4 The operating temperature range for both version 1 products and version 2 products is 0 to $40^{\circ} \mathrm{C}$.

■Trademark

EtherNet/IP ${ }^{\text {TM }}$ is a trademark of ODVA.
DeviceNet ${ }^{T M}$ is a trademark of ODVA.
EtherCAT ${ }^{\circledR}$ is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Example of Operation Command

In addition to the step data input of 64 points maximum in each communication protocol, the changing of each parameter can be performed in real time via numerical data defined operation.

* Numerical values other than "Moving force," "Area 1," and "Area 2" can be used to perform operation under numerical instructions from JXCL1.
<Application example> Movement between 2 points

No.	Movement mode	Speed	Position	Acceleration	Deceleration	Pushing force	Trigger LV	Pushing speed	Moving force	Area 1	Area 2	In position
0	1: Absolute	100	10	3000	3000	0	0	0	100	0	0	0.50
1	1: Absolute	100	100	3000	3000	0	0	0	100	0	0	0.50

<Step no. defined operation>

Sequence 1: Servo ON instruction
Sequence 2: Instruction to return to origin
Sequence 3: Specify step data No. 0 to input the DRIVE signal.
Sequence 4: Specify step data No. 1 after the DRIVE signal has been temporarily turned OFF to input the DRIVE signal.

<Numerical data defined operation>

Sequence 1: Servo ON instruction
Sequence 2: Instruction to return to origin
Sequence 3: Specify step data No. 0 and turn ON the input instruction flag (position). Input 10 in the target position. Subsequently the start flag turns ON. Sequence 4: Turn ON step data No. 0 and the input instruction flag (position) to change the target position to 100 while the start flag is ON.

The same operation can be performed with any operation command.

JXCE1/91/P1/D1/L1 Series

Dimensions

L Dimensions [mm]

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]

Options

Communication cable for controller setting
(1) Communication cable JXC-W2A-C

* It can be connected to the controller directly.
(2) USB cable LEC-W2-U

<Controller setting software/USB driver>
- Controller setting software
- USB driver (For JXC-W2A-C)

Download from SMC's website: https://www.smcworld.com

Hardware Requirements

OS	Windows $^{\circledR} 7$, Windows ${ }^{\circledR} 8.1$, Windows ${ }^{\circledR} 10$
Communication interface	USB 1.1 or USB 2.0 ports
Display	1024×768 or more

* Windows ${ }^{\circledR} 7$, Windows ${ }^{\circledR} 8.1$ and Windows ${ }^{\circledR 10}$ are registered trademarks of Microsoft Corporation in the United States.

DIN rail mounting adapter LEC-3-D0

* With 2 mounting screws

This should be used when a DIN rail mounting adapter is mounted onto a screw mounting type controller afterwards.

DIN rail AXT100-DR- \square

* For \square, enter a number from the No. line in the table on page 603-8. Refer to the dimension drawings on pages 603-8 and 603-9 for the mounting dimensions.

Power supply plug JXC-CPW

* The power supply plug is an accessory.

(6) (5) (4)
(3) (2) (1)
(1) C 24 V
(4) OV
(2) M 24 V
(5) N.C.
(3) EMG
(6) LK RLS

Power supply plug

Terminal name	Function	Details
OV	Common supply (-)	M24V terminal/C24V terminal/EMG terminal/ LK RLS terminal are common (-).
M24V	Motor power supply (+)	Motor power supply (+) of the controller
C24V	Control power supply (+)	Control power supply (+) of the controller
EMG	Stop (+)	Connection terminal of the external stop circuit
LK RLS	Lock release (+)	Connection terminal of the lock release switch

Communication plug connector
For DeviceNet ${ }^{\text {TM }}$
Straight type T-branch type
JXC-CD-S JXC-CD-T

Communication plug connector for DeviceNet ${ }^{\text {TM }}$

Terminal name	Details
V+	Power supply (+) for DeviceNet $^{\mathrm{TM}}$
CAN_H	Communication wire (High)
Drain	Grounding wire/Shielded wire
CAN_L	Communication wire (Low)
V-	Power supply (-) for DeviceNet ${ }^{\text {TM }}$

For IO-Link
Straight type
JXC-CL-S

* The communication plug connector for

Communication plug connector for IO-Link

Terminal no.	Terminal name	Details
1	L+	+24 V
2	NC	N/A
3	L-	0 V
4	C/Q	IO-Link signal

Conversion cable P5062-5 (Cable length: $\mathbf{3 0 0}$ mm)

* To connect the teaching box (LEC-T1-3 $\square \mathrm{G} \square$) or controller setting kit (LEC-W2) to the controller, a conversion cable is required.

Precautions Related to Differences in Controller Versions

JXCE1/91/P1/D1/L1 Series

As the controller version of the JXC series differs, the internal parameters are not compatible.
\square If using the JXC $\square 1 \square-\mathrm{BC}$, please use the latest version of the JXC-BCW (parameter writing tool).
There are currently 3 versions available: version 1 products (V1. \square or S1. \square), version 2 products (V2. \square or S2. \square), and version 3 products (V3. \square or S3. \square). Keep in mind that in order to write a backup file (.bkp) to another controller with the JXC-BCW, it needs to be the same version as the controller that created the file. (For example, a backup file created by a version 1 product can only be written to another version 1 product, and so on.)

Identifying Version Symbols

JXC $\square 1-X Z 23$ Series

Due to the difference in controller versions, the internal parameters of the $55^{\circ} \mathrm{C}$ specification ($\mathrm{JXC} \square 1-\mathrm{XZ23}$) and the $40^{\circ} \mathrm{C}$ specification (standard model, JXC $\square 1$) are not compatible.
\square If using the JXC $\square 1 \square-B C-X Z 23$, please use the latest version of the JXC-BCW (parameter writing tool).

LEC Series
 Teaching Box/LEC-T1

RoHS

How to Order

Standard functions

- Chinese character display
- Stop switch is provided.

Option

- Enable switch is provided.

* The displayed language can be changed to English or Japanese.

Specifications

Item	Description
Switch	Stop switch, Enable switch (Option)
Cable length [m]	3
Enclosure	IP64 (Except connector)
Operating temperature range $\left[{ }^{\circ} \mathbf{C}\right]$	5 to 50
Operating humidity range [\%RH]	90 or less (No condensation)
Weight [g]	350 (Except cable)

[CE-compliant products]
The EMC compliance of the teaching box was tested with the LECP6 series step motor controller (servo/24 VDC) and an applicable actuator.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Easy Mode

Function	Details
Step data	- Setting of step data
Jog	- Jog operation - Return to origin
Test	- 1 step operation - Return to origin
Monitor	- Display of axis and step data no. - Display of two items selected from Position, Speed, Force.
ALM	- Active alarm display - Alarm reset
TB setting	- Reconnection of axis (Ver. 1.**) - Displayed language setting (Ver. 2.**)
- Setting of easy/normal mode - Setting step data and selection of items from easy mode monitor	

Menu Operations Flowchart

Menu	Data
Data Monitor Jog Test ALM TB setting	Step data no. Setting of two items selected below Ver. 1.**: Position, Speed, Force, Acceleration, Deceleration Ver. 2.**: Position, Speed, Pushing force, Acceleration, Deceleration, Movement MOD, Trigger LV, Pushing speed, Moving force, Area 1, Area 2, In position
	Monitor
	Display of step no. Display of two items selected below (Position, Speed, Force)
	Jog
	Return to origin Jog operation
	Test
	1 step operation
	ALM
	Active alarm display Alarm reset
	TB setting
	Reconnect (Ver. 1.**) Japanese/English (Ver. 2.**) Easy/Normal Set item

Normal Mode

Function	Details
Step data	- Step data setting
Parameter	- Parameters setting
Test	- Jog operation/Constant rate movement - Return to origin - Test drive (Specify a maximum of 5 step data and operate.) - Forced output (Forced signal output, Forced terminal output)
Monitor	- Drive monitor - Output signal monitor - Input signal monitor - Output terminal monitor - Input terminal monitor
ALM	- Active alarm display (Alarm reset) - Alarm log record display
File	- Data saving Save the step data and parameters of the controller which is being used for communication (it is possible to save four files, with one set of step data and parameters defined as one file). - Load to controller Loads the data which is saved in the teaching box to the controller which is being used for communication. - Delete the saved data. - File protection (Ver. 2.**)
TB setting	- Display setting (Easy/Normal mode) - Language setting (Japanese/English) - Backlight setting - LCD contrast setting - Beep sound setting - Max. connection axis - Distance unit (mm/inch)
Reconnect	- Reconnection of axis

Menu Operations Flowchart

Menu
Step data
Parameter
Monitor
Test
ALM
File
TB setting
Reconnect

Step data	
Step data no. Movement MOD Speed Position Acceleration Deceleration Pushing force Trigger LV Pushing speed Moving force Area 1, 2 In position	
Parameter	Basic setting
$\begin{aligned} & \text { Basic } \\ & \text { ORIG } \end{aligned}$	ORIG setting
Monitor	DRV monitor
Drive Output signal Input signal Output terminal Input terminal	Position, Speed, Torque Step no. Last step no. Output signal monitor
Test	Input signal monitor
JOG/MOVE Return to ORIG Test drive Forced output	Output terminal monitor Input terminal monitor
ALM	Status
Status ALM Log record	Active alarm display Alarm reset
File	ALM Log record display
Data saving Load to controller File deletion File protection (Ver. 2.**)	Log entry display
TB setting	
Easy/Normal Language Backlight LCD contrast Beep Max. connection axis Password Distance unit	
Reconnect	

Dimensions

No.	Description	Function
$\mathbf{1}$	LCD	A screen of liquid crystal display (with backlight)
$\mathbf{2}$	Ring	A ring for hanging the teaching box
$\mathbf{3}$	Stop switch	When switch is pushed in, the switch locks and stops. The lock is released when it is turned to the right.
$\mathbf{4}$	Stop switch guard	A guard for the stop switch
$\mathbf{5}$	Enable switch (Option)	Prevents unintentional operation (unexpected operation) of the jog test function. Other functions such as data change are not covered.
$\mathbf{6}$	Key switch	Switch for each input
$\mathbf{7}$	Cable	Length: 3 meters
$\mathbf{8}$	Connector	A connector connected to CN4 of the controller

3-Axis Step Motor Controller (Etheri'et/IP Type)

JXC92 Series

How to Order

Controller

Applicable Actuators

Applicable actuators	
Electric Actuator/Rod LEY Series	p. 215
Electric Actuator/Guide Rod LEYG Series	p. 215
Electric Actuator/Slider LEF Series	p. 31
Electric Slide Table LES/LESH Series	p. 307
Electric Rotary Table LER Series	p. 399
Electric Actuator/Miniature LEPY/LEPS Series	p. 369
Electric Gripper (2-Finger Type, 3-Finger Type) LEH Series	p. 425

* Order the actuator separately, including the actuator cable.
(Example: LEFS16B-100B-S1)
* For the "Speed-Work Load" graph of the actuator, refer to the LECPA section on the model selection page of the electric actuators Web Catalog.

Specifications

For the setting of functions and operation methods, refer to the operation manual on the SMC website. (Documents/Download --> Instruction Manuals)

EtherNet//P ${ }^{\text {TM }}$ Type (JXC92)

*1 Do not use a power supply with inrush current protection for the motor drive power supply.
*2 Power consumption depends on the actuator connected. Refer to the actuator specifications for further details.
*3 EtherNet/IPTM is a trademark of ODVA.
*4 Applicable to non-magnetizing locks
(8) 606-1

Dimensions

EtherNet//PTM Type JXC92

DIN rail mounting

Controller Details

EtherNet//PTM Type JXC92

No.	Name	Description	Details
(1)	P1, P2	EtherNet/IP ${ }^{\text {TM }}$ communication connector	Connect Ethernet cable.
(2)	NS, MS	Communication status LED	Displays the status of the EtherNet/IP ${ }^{\text {TM }}$ communication
(3)	$\begin{gathered} \mathrm{X} 100 \\ \text { X10 } \\ \text { X1 } \end{gathered}$	IP address setting switches	Switch to set the 4th byte of the IP address by $\mathrm{X} 1, \mathrm{X} 10$ and X 100 .
(4)	PWR	Power supply LED (Green)	Power supply ON: Green turns on Power supply OFF: Green turns off
(5)	RUN	Operation LED (Green)	Running in EtherNet/IP ${ }^{\text {TM }}$: Green turns on Running via USB communication: Green flashes Stopped: Green turns off
(6)	USB	USB connection LED (Green)	USB connected: Green turns on USB not connected: Green turns off
(7)	ALM	Alarm LED (Red)	With alarm: Red turns on Without alarm: Red turns off
(8)	USB	Serial communication connector	Connect to a PC via the USB cable.
(9)	ENC 1	Encoder connector (16 pins)	Axis 1. Connect the actuator cable.
(10)	MOT 1	Motor power connector (6 pins)	Axis 1. Connect the actuator cable.
(11)	ENC 2	Encoder connector (16 pins)	Axis 2: Connect the actuator cable.
(12)	MOT 2	Motor power connector (6 pins)	
(13)	ENC 3	Encoder connector (16 pins)	Axis 3. Connect the actuator cable.
(14)	MOT 3	Motor power connector (6 pins)	Axis 3. Connect the actuator cable.
(15)	Cl	Control power supply connector *1	Control power supply (+), All axes stop (+), Axis 1 lock release (+), Axis 2 lock release (+), Axis 3 lock release (+), Common (-)
(16)	M PWR	Motor power supply connector *1	Motor power supply (+), Motor power supply (-)

[^8]
4-Axis Step Motor Controller (Parallel I/O/Etheri'et/IP Type)
 JXC73/83/93 Series

How to Order
Parallel I/O (JXC73/83)

Controller

JXC 732

I/O type

Symbol	I/O type
$\mathbf{7}$	NPN
$\mathbf{8}$	PNP

4-axis type

- I/O cable, mounting

Symbol	I/O cable	Mounting
$\mathbf{1}$	1.5 m	Screw mounting
$\mathbf{2}$	1.5 m	DIN rail
$\mathbf{3}$	3 m	Screw mounting
$\mathbf{4}$	3 m	DIN rail
$\mathbf{5}$	5 m	Screw mounting
$\mathbf{6}$	5 m	DIN rail
$\mathbf{7}$	None	Screw mounting
$\mathbf{8}$	None	DIN rail

* Two I/O cables are included.

EtherNet/IPTM Type (JXC93)

Applicable Actuators

Applicable actuators	
Electric Actuator/Rod LEY Series	p. 215
Electric Actuator/Guide Rod LEYG Series	p. 215
Electric Actuator/Slider LEF Series	p. 31
Electric Slide Table LES/LESH Series	p. 307
Electric Rotary Table LER Series *1	p. 399
Electric Actuator/Miniature LEPY/LEPS Series	p. 369
Electric Gripper (2-Finger Type, 3-Finger Type) LEH Series	p. 425

*1 Except the continuous rotation $\left(360^{\circ}\right)$ specification.

* Order the actuator separately, including the actuator cable.
(Example: LEFS16B-100B-S1)
* For the "Speed-Work Load" graph of the actuator, refer to the LECPA section on the model selection page.

Specifications

Parallel I/O (JXC73/83)	manual on the SMC website. (Documents/Download --> Instruction Manuals)
Item	Specifications
Number of axes	Max. 4 axes
Compatible motor	Step motor (Servo/24 VDC)
Compatible encoder	Incremental A/B phase (Encoder resolution: 800 pulse/rotation)
Power supply *1	Main control power supply Power voltage: 24 VDC $\pm 10 \%$ Max. current consumption: 300 mA Motor power supply, Motor control power supply (Common) Power voltage: 24 VDC $\pm 10 \%$ Max. current consumption: Based on the connected actuator *2
Parallel input	16 inputs (Photo-coupler isolation)
Parallel output	32 outputs (Photo-coupler isolation)
Serial communication	USB2.0 (Full Speed 12 Mbps)
Memory	Flash-ROM/EEPROM
LED indicator	PWR, RUN, USB, ALM
Lock control	Forced-lock release terminal *3
Cable length	I/O cable: 5 m or less, Actuator cable: 20 m or less
Cooling system	Natural air cooling
Operating temperature range	$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (No freezing)
Operating humidity range	90% RH or less (No condensation)
Storage temperature range	$-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (No freezing)
Storage humidity range	90% RH or less (No condensation)
Insulation resistance	Between all external terminals and the case: $50 \mathrm{M} \Omega$ (500 VDC)
Weight	1050 g (Screw mounting), 1100 g (DIN rail mounting)

*1 Do not use a power supply with inrush current protection for the motor drive power and motor control power supply.
*2 Power consumption depends on the actuator connected. Refer to the actuator specifications for further details.
*3 Applicable to non-magnetizing locks

EtherNet//P ${ }^{\text {TM }}$ Type (JXC93)

Item		Specifications
Number of axes		Max. 4 axes
Compatible motor		Step motor (Servo/24 VDC)
Compatible encoder		Incremental A/B phase (Encoder resolution: 800 pulse/rotation)
Power supply *1		Main control power supply Power voltage: 24 VDC $\pm 10 \%$ Max. current consumption: 350 mA Motor power supply, Motor control power supply (Common) Power voltage: 24 VDC $\pm 10 \%$ Max. current consumption: Based on the connected actuator *2
	Protocol	EtherNet/IPTM *4
	Communication speed	$10 \mathrm{Mbps} / 100 \mathrm{Mbps}$ (automatic negotiation)
	Communication method	Full duplex/Half duplex (automatic negotiation)
	Configuration file	EDS file
	Occupied area	Input 16 bytes/Output 16 bytes
	IP address setting range	Manual setting by switches: From 192.168.1.1 to 254, Via DHCP server: Arbitrary address
	Vendor ID	7 h (SMC Corporation)
	Product type	2 Bh (Generic Device)
	Product code	DCh
Serial communication		USB2.0 (Full Speed 12 Mbps)
Memory		Flash-ROM/EEPROM
LED indicator		PWR, RUN, USB, ALM, NS, MS, L/A, 100
Lock control		Forced-lock release terminal *3
Cable length		Actuator cable: 20 m or less
Cooling system		Natural air cooling
Operating temperature range		$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (No freezing)
Operating humidity range		90\% RH or less (No condensation)
Storage temperature range		$-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (No freezing)
Storage humidity range		90% RH or less (No condensation)
Insulation resistance		Between all external terminals and the case: $50 \mathrm{M} \Omega$ (500 VDC)
Weight		1050 g (Screw mounting), 1100 g (DIN rail mounting)

*1 Do not use a power supply with inrush current protection for the motor drive power and motor control power supply.
*2 Power consumption depends on the actuator connected. Refer to the actuator specifications for further details.
*3 Applicable to non-magnetizing locks
*4 EtherNet/IP ${ }^{T M}$ is a trademark of ODVA.

JXC73/83/93 Series

Dimensions

Parallel I/O JXC73/83

Screw mounting

DIN rail mounting

DIN rail mounting

Controller Details

Parallel I/O JXC73/83

EtherNet//PTM Type JXC93

No.	Name	Description	Details
(1)	PWR	Power supply LED (Green)	Power supply ON: Green turns on Power supply OFF: Green turns off
(2)	RUN	Operation LED (Green)	Running in parallel I/O: Green turns on Running via USB communication: Green flashes Stopped: Green turns off
(3)	USB	USB connection LED (Green)	USB connected: Green turns on USB not connected: Green turns off
(4)	ALM	Alarm LED (Red)	With alarm: Red turns on Without alarm: Red turns off
(5)	USB	Serial communication	Connect to a PC via the USB cable.
(6)	C PWR	Main control power supply connector (2 pins) *1	Main control power supply (+) (-)
(7)	I/O 1	Parallel I/O connector (40 pins)	Connect to a PLC via the I/O cable.
(8)	I/O 2	Parallel I/O connector (40 pins)	Connect to a PLC via the I/O cable.
(9)	ENC 1	Encoder connector (16 pins)	
(10)	MOT 1	Motor power connector (6 pins)	
(11)	ENC 2	Encoder connector (16 pins)	Axis 2: Connect the a
(12)	MOT 2	Motor power connector (6 pins)	Axis 2. Conned the
(13)	CI 12	Motor control power supply connector*1	Motor control power supply (+), Axis 1 stop (+), Axis 1 lock release (+), Axis 2 stop (+), Axis 2 lock release (+)
(14)	M PWR 1] 2	Motor power supply connector*1	For Axis 1, 2. Motor power supply (+), Common (-)
(15)	ENC 3	Encoder connector (16 pins)	
(16)	MOT 3	Motor power connector (6 pins)	
(17)	ENC 4	Encoder connector (16 pins)	Axis 4: Connect the actuator cable.
(18)	MOT 4	Motor power connector (6 pins)	Axis 4. Conne
(19)	Cl 34	Motor control power supply connector*1	Motor control power supply (+), Axis 3 stop (+), Axis 3 lock release (+), Axis 4 stop (+), Axis 4 lock release (+)
(20)	M PWR 3 4	Motor power supply connector*1	For Axis 3, 4. Motor power supply (+), Common (-)

*1 Connectors are included. (Refer to page 606-7.)

No.	Name	Description	Details
(1)	PWR	Power supply LED (Green)	Power supply ON: Green turns on Power supply OFF: Green turns off
(2)	RUN	Operation LED (Green)	Running in EtherNet/IPTM: Green turns on Running via USB communication: Green flashes Stopped: Green turns off
(3)	USB	USB connection LED (Green)	USB connected: Green turns on USB not connected: Green turns off
(4)	ALM	Alarm LED (Red)	With alarm: Red turns on Without alarm: Red turns off
(5)	USB	Serial communication	Connect to a PC via the USB cable.
(6)	C PWR	Main control power supply connector (2 pins) *1	Main control power supply
(7)	$\begin{gathered} \mathrm{x} 100 \\ \text { x10 } \\ \text { x1 } \end{gathered}$	IP address setting switches	Switch to set the 4th byte of the IP address by X1, X10 and X100.
(8)	MS, NS	Communication status LED	Displays the status of the EtherNet/IP ${ }^{\text {TM }}$ communication
(9)	ENC 1	Encoder connector (16 pins)	Axis 1: Connect the actuator cable.
(10)	MOT 1	Motor power connector (6 pins)	
(11)	ENC 2	Encoder connector (16 pins)	Axis 2: Connect the actuator cable.
(12)	MOT 2	Motor power connector (6 pins)	
(13)	CI 12	Motor control power supply connector*1	Motor control power supply (+), Axis 1 stop (+), Axis 1 lock release (+), Axis 2 stop (+), Axis 2 lock release (+)
(14)	M PWR 1 2 2	Motor power supply connector *1	For Axis 1, 2. Motor power supply (+), Common (-)
(15)	ENC 3	Encoder connector (16 pins)	Axis 3: Connect the actuator cable.
(16)	MOT 3	Motor power connector (6 pins)	
(17)	ENC 4	Encoder connector (16 pins)	Axis 4: Connect the actuator cable.
(18)	MOT 4	Motor power connector (6 pins)	
(19)	CI 34	Motor control power supply connector*1	Motor control power supply (+), Axis 3 stop (+), Axis 3 lock release (+), Axis 4 stop (+), Axis 4 lock release (+)
(20)	M PWR 3\|4	Motor power supply connector *1	For Axis 3, 4. Motor power supply (+), Common (-)
(21)	P1, P2	EtherNet//P ${ }^{\text {TM }}$ communication connector	Connect Ethernet cable.

*1 Connectors are included. (Refer to page 606-7.)

JXC73/83/92/93 Series

Wiring Example 1

Terminal name	Function	Details
+24 V	Main control power supply (+)	Power supply (+) supplied to the main control
$24-0 \mathrm{~V}$	Main control power supply (-)	Power supply (-) supplied to the main control

*1 Part no.: JXC-C1 (Cable length: 1.5 m)

Motor Power Supply Connector (For 3/4 Axes)*2: M PWR			2 pcs.*3	$\begin{gathered} \hline \text { For } 3 \text { Axes } \\ \hline \text { JXC92 } \end{gathered}$	For 4 Axes JXC73/83/93
Terminal name	Function	Details			Note
OV	Motor power supply (-)	Power supply (-) supp	d to the motor power		$\begin{aligned} & 3 \text { axes } \\ & 92 \end{aligned}$
		The M 24 V terminal, C 2 terminal, and LKRLS term	4 V terminal, EMG minal are common (-).		$\begin{aligned} & 4 \text { axes } \\ & 73 / 83 / 93 \end{aligned}$
M 24V	Motor power supply (+)	Power supply (+) suppli	ed to the motor power		

*2 Manufactured by PHOENIX CONTACT (Part no.: MSTB2, 5/2-STF-5, 08)
*3 1 pc. for 3 axes (JXC92)

Motor Control Power Supply Connector (For 4 Axes)*4: C
2 pcs.
For 4 Axes
JXC73/83/93

Terminal name	Function	Details
C 24V	Motor control power supply (+)	Power supply (+) supplied to the motor control
EMG1/EMG3	Stop (+)	Axis 1/Axis 3: Input (+) for releasing the stop
EMG2/EMG4	Stop (+)	Axis 2/Axis 4: Input (+) for releasing the stop
LKRLS1/LKRLS3	Lock release (+)	Axis 1/Axis 3: Input (+) for releasing the lock
LKRLS2/LKRLS4	Lock release (+)	Axis 2/Axis 4: Input (+) for releasing the lock

*4 Manufactured by PHOENIX CONTACT (Part no.: FK-MC0, 5/5-ST-2, 5)

Control Power Supply Connector (For 3 Axes)*5: Cl 1 pc.

Terminal name	Function	Details
0V	Control power supply (-)	The C 24V terminal, LKRLS terminal, and EMG terminal are common (-).
C 24V	Control power supply (+)	Power supply (+) supplied to the control
LKRLS3	Lock release (+)	Axis 3: Input (+) for releasing the lock
LKRLS2	Lock release (+)	Axis 2: Input (+) for releasing the lock
LKRLS1	Lock release (+)	Axis 1: Input (+) for releasing the lock
EMG	Stop (+)	All axes: Input (+) for releasing the stop

*5 Manufactured by PHOENIX CONTACT (Part no.: FK-MC0, 5/6-ST-2, 5)

Cable with main control power supply connector

Motor power supply connector

Motor control power supply connector

Control power supply connector

Wiring Example 2

Parallel I/O Connector	* When you connect a PLC to the I/O 1 or I/O 2 parallel I/O connector, use the I/O cable (JXC-C2- \square).
$*$	The wiring changes depending on the type of the parallel I/O (NPN or PNP).

I/O 1 Wiring example

NPN JXC73

I/O 1 Input Signal

Name	Details
+COM1 +COM2	Connects the power supply 24 V for input/output signal
IN0 to IN8	Step data specified Bit No. (Standard: When 512 points are used)
IN9	Step data specified extension Bit No. (Extension: When 2048 points are used)
IN10	Instruction to return to origin
SETUP	Operation is temporarily stopped
HOLD	Instruction to drive
DRIVE	Alarm reset and operation interruption
RESET	Servo ON instruction
SVON	

PNP JXC83

OUT0	10	Load
OUT1	30	Load
OUT2	11	Load
OUT3	31	Load
OUT4	12	Load
OUT5	32	Load
OUT6	13	Load
OUT7	33	Load
OUT8	14	Load
BUSY (OUT9)	34	Load
AREA (OUT10)	15	Load
SETON	35	Load
INP	16	Load
SVRE	36	Load
*ESTOP	17	Load
*ALARM	37	Load
-COM1	18	
-COM1	19	
-COM1	38	
-COM2	20	
-COM2	39	
-COM2	40	

I/O 1 Output Signal

Name OUT0 to OUT8	Details
BUSY (OUT9)	Outputs the step data no. during operation
AREA (OUT10)	Outputs when all actuators are within the area output range
SETON	Outputs when the return to origin of all actuators is completed
INP	Outputs when the positioning or pushing of all actuators is completed
SVRE	Outputs when servo is ON
*ESTOP *1	Not output when EMG stop is instructed
*ALARM *1	Not output when alarm is generated
-COM1 -COM2	Connects the power supply 0 V for input/output signal

*1 Negative-logic circuit signal

JXC73/83/92/93 Series

Wiring Example 2

Parallel I/O Connector * When you connect a PLC to the I/O 1 or I/O 2 parallel I/O connector, use the I/O cable (JXC-C2- \square). * The wiring changes depending on the type of the parallel I/O (NPN or PNP).

I/O 2 Wiring example

NPN JXC73

I/O 2 Input Signal

Name	Details
+COM3 +COM4	Connects the power supply 24 V for input/output signal
N.C.	Cannot be connected

PNP JXC83

+COM3	1	$24 \text { VDC }$	BUSY1	10	Load
			BUSY2	30	Load
+COM4	21		BUSY3	11	Load
N.C. *1	2		BUSY4	31	Load
N.C. *1	22		AREA1	12	Load
N.C. *1	3		AREA2	32	Load
N.C. *1	23		AREA3	13	Load
N.C. *1	4		AREA4	33	Load
			INP1	14	Load
N.C. *1	24		INP2	34	Load
N.C. *1	5		INP3	15	Load
N.C. *1	25		INP4	35	Load
N.C. *1	6		*ALARM1	16	Load
N.C. *1	26		*ALARM2	36	Load
			*ALARM3	17	Load
N.C. *1	7		*ALARM4	37	Load
N.C. *1	27		-COM3	18	
N.C. *1	8		-COM3	19	
N.C. *1	28		-COM3	38	
N.C. *1	9		-COM4	20	
N.C. *1	29		-COM4	39	
*1 Cann	be	onnected	-COM4	40	

I/O 2 Output Signal

Name	Details
BUSY1	Busy signal for axis 1
BUSY2	Busy signal for axis 2
BUSY3	Busy signal for axis 3
BUSY4	Busy signal for axis 4
AREA1	Area signal for axis 1
AREA2	Area signal for axis 2
AREA3	Area signal for axis 3
AREA4	Area signal for axis 4
INP1	Positioning or pushing completion signal for axis 1
INP2	Positioning or pushing completion signal for axis 2
INP3	Positioning or pushing completion signal for axis 3
INP4	Positioning or pushing completion signal for axis 4
*ALARM1 *2	Alarm signal for axis 1
*ALARM2 *2	Alarm signal for axis 2
*ALARM3 *2	Alarm signal for axis 3
*ALARM4 *2	Alarm signal for axis 4
-COM3	Connects the power supply 0 V for input/output signal
-COM4	

*2 Negative-logic circuit signal

Options

Cable with main control power supply connector For4Axes
 JXC-C1

Cable length: 1.5 m (Accessory)

Number of cores	2
AWG size	AWG20

Cable color: Brown (24V)

I/O cable (1 pc.)

Number of cores	40
AWG size	AWG28

Weight

Product no.	Weight $[\mathrm{g}]$
JXC-C2-1	160
JXC-C2-3	300
JXC-C2-5	480

For 4 Axes JXC73/83

Pin no.	Wire color						
1	Orange (Black 1)	6	Orange (Black 2)	11	Orange (Black 3)	16	Orange (Black 4)
21	Orange (Red 1)	26	Orange (Red 2)	31	Orange (Red 3)	36	Orange (Red 4)
2	Gray (Black 1)	7	Gray (Black 2)	12	Gray (Black 3)	17	Gray (Black 4)
22	Gray (Red 1)	27	Gray (Red 2)	32	Gray (Red 3)	37	Gray (Red 4)
3	White (Black 1)	8	White (Black 2)	13	White (Black 3)	18	White (Black 4)
23	White (Red 1)	28	White (Red 2)	33	White (Red 3)	38	White (Red 4)
4	Yellow (Black 1)	9	Yellow (Black 2)	14	Yellow (Black 3)	19	Yellow (Black 4)
24	Yellow (Red 1)	29	Yellow (Red 2)	34	Yellow (Red 3)	39	Yellow (Red 4)
5	Pink (Black 1)	10	Pink (Black 2)	15	Pink (Black 3)	20	Pink (Black 4)
25	Pink (Red 1)	30	Pink (Red 2)	35	Pink (Red 3)	40	Pink (Red 4)

DIN rail

AXT100-DR- \square

* For \square, enter a number from the No. line in the table below. Refer to the dimension drawings on pages 606-2 and 606-5 for the mounting dimensions.

L Dimension

No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
\mathbf{L}	23	35.5	48	60.5	73	85.5	98	110.5	123	135.5	148	160.5	173	185.5	198	210.5	223	235.5	248	260.5
No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{L}	273	285.5	298	310.5	323	335.5	348	360.5	373	385.5	398	410.5	423	435.5	448	460.5	473	485.5	498	510.5

\section*{DIN rail mounting bracket (with 6 mounting screws) For 3Axes | For 4 Axes |
| :---: |
 JXC-Z1}

This should be used when the DIN rail mounting bracket is mounted onto a screw mounting type controller afterwards.

Options

Contents

(1) Controller setting software (CD-ROM)
(2) USB cable (Cable length: 3 m)

Description		Model
(1)	Controller setting software	JXC-W1-1
(2)	USB cable	JXC-W1-2
		(The same cable as the JXC-MA1-2)

* Can be ordered separately

Contents

(1) Controller setting software (CD-ROM)*1
(2)USB cable (Cable length: 3 m)

Description		Model
(1)	Controller setting software	JXC-MA1-1
(2)	USB cable	JXC-MA1-2
	(The same cable as the JXC-W1-2)	

* Can be ordered separately

Hardware Requirements

PC/AT compatible machine with Windows 7 or Windows 8.1 and USB1.1 or USB2.0 port

* Windows ${ }^{\circledR}$ is a registered trademark of Microsoft Corporation in the United States.

Hardware Requirements

PC/AT compatible machine with Windows 7 or Windows 8.1 and USB1.1 or USB2.0 port
*1 The controller setting software also includes software dedicated for 4 axes.

* Windows ${ }^{\circledR}$ is a registered trademark of Microsoft Corporation in the United States.

Options: Actuator Cable

[Robotic cable, standard cable for step motor (Servo/24 VDC)]

[Robotic cable, standard cable with lock and sensor for step motor (Servo/24 VDC)]

For 3 Axes For 4 Axes
 JXC92 JXC73/83/93

LE - CP - $\mathbf{1}$
Cable length (L) [m]

$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	$8^{* 1}$
A	10^{*+1}
\mathbf{B}	$15^{* 1}$
\mathbf{C}	$20^{* 1}$

*1 Produced upon receipt of order (Robotic cable only) With lock and sensor

Cable type

Nil	Robotic cable (Flexible cable)
\mathbf{S}	Standard cable

Weight

Product no.	Weight [g]	Note
LE-CP-1-B-S	240	Standard cable
LE-CP-3-B-S	380	
LE-CP-5-B-S	630	
LE-CP-1-B	190	
LE-CP-3-B	360	
LE-CP-5-B	590	Robotic cable
LE-CP-8-B	1060	
LE-CP-A-B	1320	
LE-CP-B-B	1920	
LE-CP-C-B	2620	

LE-CP- ${ }_{5}^{13} /$ Cable length: $1.5 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$

[^0]: Note) Signal of negative-logic circuit (N.C.)

[^1]: *When the actuator is within the "In position" range in the pushing operation, it

[^2]: Size
 L: 2.0 to $2.4[\mathrm{~mm}]$
 End width \quad End thickness $\mathbf{W}: 0.5$ to $0.6[\mathrm{~mm}]$

[^3]: * Parallel I/O signal is valid in auto mode. While the test function operates at manual mode, only the output is valid.

[^4]: "*ALARM" is expressed as negative-logic circuit.

[^5]: * Parallel I/O signal is valid in auto mode. While the test function operates at manual mode, only the output is valid.

[^6]: * "*ALARM" is expressed as negative-logic circuit.

[^7]: * Refer to the LECPA series Operation Manual for installation.

[^8]: *1 Connectors are included. (Refer to page 606-7.)

