
 Stroke Reading Cylinder and Counter Sersect

Achieve rationalization

Stroke reading cylinder

Measurement is possible throughout the full stroke range.
The home position can be anywhere \longrightarrow When the counter is reset by pressing within the cylinder stroke. the cylinder rod to the reference plane, that point becomes the home position.

High Precision Stroke Reading Cylinder (CEP1)

- Resolution: 0.01 mm (Accuracy $\pm 0.02 \mathrm{~mm}$)
- Special scraper now standard (IP-67)
- 2 types of seal material available (Made to Order)
- Power supply voltage 12 to 24 VDC

Stroke Reading Cylinder (CE1)

- Resolution: 0.1 mm (Accuracy $\pm 0.2 \mathrm{~mm}$)
- Water resistance improved by changing the sensor unit filler.

- Power supply voltage 12 to 24 VDC
- Abundant stroke variations
- Improved noise resistance

System Configuration

of production lines

with position feedback

Tolerances of preset values can be set. (CEU1, CEU5)

Tolerances can be set for preset values.
CEU1: \pm set tolerance
CEU5: + set tolerance, - set tolerance (separate settings)

CEU1

Power Output transistor mopply voltage	NPN	PNP
100 VAC	\bullet	\bullet
24 VDC	\bullet	\bullet

CEU5				
Count data output	RS-232C+BCD		RS-232C	
Powel supply voltage	NPN	PNP	NPN	PNP
100 to 240 VAC	\bigcirc	\bigcirc	\bigcirc	\bigcirc
24 VDC	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Series CEP1

Bore size (mm)	Standard stroke (mm)			
	25	50	75	100
12 equivalent	\bullet	\bullet	\bullet	\bullet
20 equivalent	\bullet	\bullet	\bullet	\bullet

Application Example

Parts inspection

Measures the dimensions of parts, discriminates between good and defective articles, and prevents the mingling of different parts, etc.

Confirmation of press-in

Can confirm the press-in of a hydraulic cylinder by detecting its stroke.
Even if the size of the workpiece changes, the point of press-in completion can be easily changed.

Discrimination of direction
Maintains a constant height of measuring workpiece height.

Detection of lifter position

Can continuously monitor a lifter's stroke.

Nozzle height adjustment

Maintains a certain height of a workpiece and a nozzle by measuring the height of a workpiece.

Measurement of machining dimensions
Performs adjustment of machining depth, etc. by measuring the part dimensions before machining.

Measurement Principle

The amount of rod movement in the stroke reading cylinder is detected using an MR element (magnetic resistance element) whose resistance value changes due to magnetic force. The detection unit containing this MR element is called the sensor head. An amplifying circuit and a dividing circuit are required to produce output which can be read by the counter, and these are attached to the cylinder case. The sensor head and amplifier section together are referred to as the sensor unit.

The stroke reading cylinder is equipped with the capability of outputting the piston stroke movement as a pulse signal. The measurement principle is as shown in the drawing below.

Signal (2)

1. Scales of magnetic layers and non-magnetic layers are etched at a certain pitch on the piston rod.
2. With movement of the piston rod, a sin, cos 2-phase signal (Signal (1)) is received by the magnetic resistance element. For this wave form, 1 pitch (0.8 mm) becomes exactly 1 cycle.
3. This is amplified and divided into $1 / 8$ parts. As a result, a 90° phase difference pulse signal of $0.1 \mathrm{~mm} /$ pulse (Signal (2)) is output.
4. By measuring this pulse signal with the counter, it is possible to detect the piston position with a resolution of 0.1 mm .
5. In the case of the high precision stroke reading cylinder, the sin, cos 2-phase signal obtained in 2 is amplified and divided into $1 / 20$ parts. As a result, a 90° phase difference pulse signal of $0.04 \mathrm{~mm} /$ pulse (Signal (2)) is output.
6. By multiplying this pulse signal by 4 with the counter, it is possible to detect the piston position with a resolution of 0.01 mm.

A/B Phase Difference Output (90° phase difference output)

When movement is expressed by a single line of pulses, it is impossible to accurately identify the current position, because pulse waves appear in both upward and downward directions.
Accordingly, in A/B phase difference output, two lines of pulses are provided, wherein one line detects the movement and the other distinguishes the direction.
The CE1 also employs this system.

4 Times Multiplication Function

This function increases resolution 4 times by counting 4 for each cycle of pulses, instead of counting 1 for each cycle as is normally the case. In principle, this function counts each time there is a rise or fall in either of the A or B phase pulses.

Counting Speed (kHz, kcps)

Counting speed indicates the number of pulses that can be counted per second. If the stroke reading cylinder is operated at high speeds, pulse waves are output in shorter cycles. The counting speed of the counter must be higher than the pulse speed for the maximum piston speed when operating. Since the stroke reading cylinder outputs one pulse for each 0.1 mm of movement, 5,000 pulses will be output for each 500 mm of movement. Therefore, a speed of $500 \mathrm{~mm} / \mathrm{s}$ is equivalent to $5 \mathrm{kcps}(\mathrm{kHz})$, but a counting speed 2 to 3 times greater is recommended for actual operation.

Repeatability

The accuracy is the difference between the dimensions based upon the signals of the stroke reading cylinder and the absolute dimensions.
The maximum display error that will appear on the counter's digital display is equal to twice (± 1 count) the resolution when the home position is reset and when dimensions are measured.

Series CE

Specific Product Precautions
 Be sure to read before handling.

Mounting

Caution

1. When screwing a nut or fitting, etc. onto the threaded section at the end of the piston rod, return the piston rod to its fully retracted position, and grasp the exposed portion of the rod across two parallel sides with a wrench. In the case of the high precision stroke reading cylinder, there are no parallel sides. Secure the workpiece with a double nut.
Note) Do not apply rotational torque to the piston rod.

2. Operate the cylinder in such a way that the load is always applied in the axial direction.

- In case the load is applied in a direction other than the axial direction of the cylinder, provide a guide to constrain the load itself.
- When mounting a cylinder, centering should be done carefully.

3. Avoid using the air cylinder in such a way that rotational torque would be applied to the piston rod.

4. Be careful to avoid scratches or dents, etc. on the sliding sections of the piston rod.

Sensor Unit

1. The sensor unit is adjusted to an appropriate position at the time of shipment. Therefore, never detach the sensor unit from the body.
2. The cylinder should be protected from contact with liquids such as coolants or coolant water. (CE1)
3. The sensor cable should not be pulled with a strong force.
4. Since the sensor for stroke reading cylinder adopts the magnetic method, it may result in malfunction if there is a strong magnetic field around the sensor. Use it under the external magnetic field with 14.5 mT or less.

This is equivalent to a magnetic field of approximately 18 cm in radius from a welding area using a welding amperage of almost 15,000 amperes. To use the system in a magnetic field that exceeds this value, use a magnetic material to shield the sensor unit.
5. Switches or relays, etc. should not be installed in the power supply line (12 to 24 VDC).

Effects of Noise

Caution

When the stroke reading cylinder is used near a motor, welding machine or other source of noise generation, there is a possibility of miscounting. In this case, noise should be suppressed as much as possible and the following countermeasure should be taken.

1. Connect the shield wire to FG (flame ground).
2. The maximum transmission distance for the stroke reading cylinder is 23 m , but since the output signal is a pulse output, the sensor cable should be wired separately from other power lines.

* When using SMC extension cable and counter.

Noise Counter Measures

Methods of dealing with noise are given below.

1. Connect only the shield wire to FG (frame ground).
2. Use a power source separate from large motors and AC valves, etc.
3. Run the stroke reading cylinder's cable away from other power lines.
4. Install a noise filter in the 100 VAC power line, and install a varistor in the DC power supply of the sensor cable.

When the speed of the stroke reading cylinder is greater than the counting speed of the counter, the counter will miscount.
For CE1 (when measuring to 0.1 mm), a counter should be used with a counting speed of $10 \mathrm{kHz}(\mathrm{kcps})$ or more.
And for CEP1 (when measuring to 0.01 mm), use a counter with a counting speed of 50 kHz (kcps) or more when 4 times multiplication is input.

<Malfunction due to lurching and bounding>

When lurching or bounding occurs at the beginning or end of stroke reading cylinder, or due to other causes, the cylinder speed momentarily increases, and there is a possibility of exceeding the counting speed of the counter or the response speed of the sensor, thereby causing a miscount.

Handling of Technical Material

The instruction manuals should be read before using the Series CEP1 high precision stroke reading cylinder, CEU5 multi counter, CE1 scale cylinder and CEU1 3 point preset counter.

High Precision Stroke Reading Cylinder Non-rotating Piston Type Series CEP1

How to Order

Extension cable CE1-R 05

Cable length	
$\mathbf{0 5}$	5 m
$\mathbf{1 0}$	10 m
$\mathbf{1 5}$	15 m
$\mathbf{2 0}$	20 m

- Suffix

Nil	Extension cable
\mathbf{C}	Extension cable \& connector

Mounting Bracket Part No.

Cylinder part no.	Foot	Rod side flange
CEP1 $\square 12$	CEP1-L12	CEP1-F12
CEP1 $\square \mathbf{2 0}$	CEP1-L20	CEP1-F20

Applicable Auto Switch/Refer to page 10-20-1 for further information on auto switches.

Type	Special function	Electrical entry		Wiring (Output)	Load voltage			Auto switch model		Lead wire length (m)			Pre-wire connector	Applicable load	
						C	AC	Perpendicular	In-line	$\begin{gathered} 0.5 \\ \text { (Nil) } \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (Z) \\ \hline \end{gathered}$			
$\begin{aligned} & \text { C } \\ & \sum_{0}^{2} \\ & \hline \end{aligned}$	-	Grommet	Yes	3 -wire (NPN equivalent)	-	5 V	-	A96V	A96	\bigcirc	\bigcirc	-	-	IC circuit	-
$\begin{aligned} & \underset{\square}{\mathbb{\otimes}} \\ & \hline \end{aligned}$				2-wire	24 V	12 V	100 V	A93V	A93	\bigcirc	\bigcirc	-	-	-	Relay, PLC
ᄃ0.0000000000		Grommet	Yes	3-wire (NPN)	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	-	M9NV	M9N	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC circuit	Relay, PLC
				$\begin{aligned} & \hline \text { 3-wire } \\ & \text { (PNP) } \\ & \hline \end{aligned}$				M9PV	M9P	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
	Diagnostic indication (2-color indication)			2-wire		12 V		M9BV	M9B	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	
				3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		F9NWV	F9NW	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC circuit	
				3-wire (PNP)				F9PWV	F9PW	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
				2-wire		12 V		F9BWV	F9BW	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	
	Water resistant (2-color indication)							-	F9BA	-	\bigcirc	\bigcirc	\bigcirc		
				(Example) M9N (Example) M9NL (Example) M9NZ				* Solid state switches marked with " \bigcirc " are produced upon receipt of order.							

- Refer to page 10-12-16 for details on other applicable auto switches than listed above.
- For details about auto switches with pre-wire connector, refer to page 10-20-66.

Cylinder Specifications

Sensor Specifications

Cable	$ø 7,6$ core twisted pair shielded wire (Oil, Heat \& Flame resistant)
Maximum transmission distance	23 m (when using SMC cable and counter)
Position detection method	Magnetic scale rod, sensor head <Incremental type>
Magnetic field resistance	14.5 mT
Power supply	10.8 to 26.4 VDC (Power supply ripple: 1% or less)
Current consumption	50 mA
Resolution	0.01 mm (With 4 times multiplication)
Accuracy	$\pm 0.02 \mathrm{~mm}^{(1)}$ (at $\left.20^{\circ} \mathrm{C}\right)$
Output type	Open collector (24 VDC, 40 mA)
Output signal	A/B phase difference output
Insulation resistance	$500 \mathrm{VDC}, 50 \mathrm{M} \Omega$ or more (between case and 12E)
Vibration resistance	33.3 Hz 6.8 G 2 hrs. each in X, Y directions 4 hrs. in Z direction based upon JIS D 1601
Impact resistance	30 G 3 times each in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ directions
Enclosure	IP-67 (IEC Standard) ${ }^{(2)}$
Extension Cable (Option)	CE1-R* $5 \mathrm{~m}, 10 \mathrm{~m}, 15 \mathrm{~m}, 20 \mathrm{~m}$

JIS Symbol

Extension Cable (Option)
CE1-R* $5 \mathrm{~m}, 10 \mathrm{~m}, 15 \mathrm{~m}, 20 \mathrm{~m}$
Note 1) This includes the digital display error of the counter (CEU5).
Moreover, the overall accuracy after mounting on equipment will vary depending on mounting conditions and the environment. Therefore, the customer should calibrate the equipment as a whole.
Note 2) Except for the connector, the cylinder section is the equivalent of an SMC water resistant cylinder.

Cylinder Stroke

Model	Standard stroke (mm)				Manufacturable stroke range
	25	50	75	100	
CEP1B12	-	-	-	-	0 to 150
CEP1B20	-	-	-	-	0 to 300

Series CEP1

Weight (Without mounting bracket/connector)

Bore size (mm)	Cylinder stroke (mm)			
	25	50	75	100
$\mathbf{1 2}$	0.29	0.33	0.37	0.41
$\mathbf{2 0}$	0.62	0.68	0.74	0.80

Proper Auto Switch Mounting Position

Regarding dimensions for the proper auto switch mounting position (at stroke end), refer to page 10-12-16.

Rod End Nut Dimensions

(2 pcs. are attached as standard.)

Applicable bore size (mm)	d	H	B	C	D
$\mathbf{1 2}$	$\mathrm{M} 5 \times 0.8$	3	8	9.2	7.8
$\mathbf{2 0}$	$\mathrm{M} 8 \times 1.25$	5	13	15.0	12.5

Electrical Wiring

Output type

The output signal of the high precision stroke reading cylinder is A / B phase difference output (open collector output) as shown in the figure below.
The relation between the movement distance and the signal output of the high precision stroke reading cylinder is that for each 0.04 mm of movement a one pulse signal is output to both output terminals A and B. In order to measure with a discrimination of 0.01 mm , a counter with a 4 times multiplication function (CEU5) is required.

Input/Output

The input/output of the stroke reading cylinder is performed by a $\varnothing 7$ shielded twisted pair wire from the sensor section plus a connector.

Output circuit of stroke reading cylinder
Signal

Contact signal	Wire color	Signal name
A	White	A phase
B	Yellow	B phase
C	Brown	COM (0 V)
D	Blue	COM (0 V)
E	Red	+12 to 24 V
F	Black	0 V
G	-	Shield

High Precision Stroke Reading Cylinder Non-rotating Piston Type

Construction

Component Parts

No.	Description	Material	Note
(1)	Cylinder tube	Aluminum alloy	Hard anodized
(2)	Rod cover	Aluminum alloy	Hard chrome plated
(3)	Head cover	Aluminum alloy	Hard anodized
(4)	Piston A	Aluminum alloy	Hard anodized
(5)	Piston B	Aluminum alloy	Hard anodized
(6)	Piston rod	Carbon steel	Hard chrome plated
(7)	Tie-rod	Carbon steel	Chromated
(8)	Tie-rod nut	Carbon steel	Nickel plated
(9)	Seal ring	Aluminum alloy	White anodized
(10)	Centering location ring	Aluminum alloy	White anodized
(11)	Rod end pin	Stainless steel	Quenched
(12)	Sensor unit	-	With or without connector
(13)	Wear ring	Special resin	
(14)	Bushing	Cast iron	

No.	Description	Material	Note
(15)	Magnet	Rare earth	
(16)	Cross recessed countersunk head screw	Chromium molybdenum steel	Nickel plated
(17)	Hexagon socket head cap screw	Stainless steel	
(18)	Hexagon nut	Carbon steel	Nickel plated
(19)	Spring washer	Steel wire	Nickel plated
(20)	Spring washer	Steel wire	Nickel plated
(21)	Hexagon nut	Carbon steel	Rod end nut
(22)	Sensor case gasket	NBR	
(23)	Piston seal	NBR	
(24)	Scraper	NBR	
(25)	Tube gasket	NBR	
(26)	Rod seal	NBR	
(27)	O-ring	NBR	
(28)	O-ring	NBR	

* Since there is a possibility of improper operation, please contact SMC regarding the replacement of seals.

Series CEP1

Dimensions: $\boldsymbol{\varnothing 1 2}$
Direct mounting, rod side tapped style:
CEP1B12 -Stroke

Foot style:

CEP1L12 -Stroke

Rod side flange style:
CEP1F12 - Stroke

CE2
ML2B
C $_{6}^{1} 5-S$
CV
MVGQ
CC
RB
J
D-
-X
$20-$
Data

Series CEP1

Dimensions: ø20
Direct mounting, rod side tapped style:

CEP1B20 - Stroke

Foot style:

CEP1L20 - Stroke

Rod side flange style:

CEP1F20 - Stroke

Series CEP1

Proper Auto Switch Mounting Position (Detection at stroke end) and Its Mounting Height

Proper Auto Switch Mounting Position

	$\begin{aligned} & \text { D-A9 } \square \\ & \text { D-A9 } \square \text { V } \end{aligned}$		$\begin{aligned} & \text { D-M9 } \square \\ & \text { D-M9 } \square \mathbf{V} \\ & \text { D-F9 } \square \mathbf{W} \\ & \text { D-F9 } \square \mathbf{W V} \end{aligned}$		D-F9BAL	
	A	B	A	B	A	B
12	75	8	79	12	78	11
20	82	12	86	16	85	15

Operating Range

Auto switch model	Bore size (mm)	
	$\mathbf{1 2}$	$\mathbf{2 0}$
D-A9 $\square /$ A9 $\square \mathbf{V}$	6	10
D-M9 $\square /$ M9 $\square \mathbf{V}$	2.5	3
D-F9 \square W/F9 $\square \mathbf{W V}$ D-F9BAL	3	5

* Since this is a guideline including hysteresis, not meant to be guaranteed. (Assuming approximately $\pm 30 \%$ dispersion)
There may be the case it will vary substantially depending on an ambient environment.
 I For detailed specifications, refer to page 10-20-1.

I Type	Model	Electrical entry	Features
Reed switch	D-A90	Grommet (In-line)	Without indicator light
	D-A90V	Grommet (Perpendicular)	

I Normally closed (NC = b contact), solid state switch (D-F9G/F9H type) are also available.
I For details, refer to page 10-20-40.

Stroke Reading Cylinder Series CE1

ฮ12, ø20, ø32, ø40, ø50, ø63

How to Order

Applicable Auto Switch/Refer to page 10-20-1 for further information on auto switches.

Type	Special function	Electrical entry	$\begin{aligned} & \text { ㄷㅡㅡ } \\ & \text { "흫 } \\ & \text { 흏 } \\ & \hline \end{aligned}$	Wiring (Output)	Load voltage			$\begin{aligned} & \hline \text { Rail mounting } \\ & \hline \varnothing 12 \text { to } \varnothing 63 \\ & \hline \end{aligned}$		$\begin{gathered} \hline \text { Direct mounting } \\ \varnothing 32 \text { to } \varnothing 63 \\ \hline \end{gathered}$		Lead wire length (m)*				Pre-wire connector	Applicable load		
					DC		AC			$\begin{gathered} 0.5 \\ \text { (Nil) } \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (\mathrm{Z}) \end{gathered}$	None(N)						
							Perpendicular	In-line	Perpendicular					In-line					
		Grommet	Yes	$\left(\begin{array}{c}3-\text { wire } \\ \text { (NPN equivalent) }\end{array}\right.$	-	5 V		-	-	A76H	A96V	A96	\bigcirc	\bigcirc	-	-	-	IC circuit	-
				2-wire	-	-	200 V	A72	A72H	-	-	\bigcirc	\bigcirc	-	-	-	-	Relay, PLC	
					24 V	12 V		A73	A73H	-	-	\bigcirc	\bigcirc	\bigcirc	-	-			
							100 V	-	-	A93V	A93	-	\bigcirc	-	-	-			
		Connector					-	A73C	-	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-			
	$\underset{\substack{\text { Diagnostic indication } \\ \text { (2-color indication) }}}{ }$	Grommet				-		A79W	-	-	-	-	\bullet	-	-	-			
	-	Grommet	Yes	3-wire (NPN)	$5 \mathrm{~V}, 12 \mathrm{~V}$		-	F7NV	F79	M9NV	M9N	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	IC circuit	Relay, PLC	
				3-wire (PNP)			F7PV	F7P	M9PV	M9P	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc				
				wire		12 V		F7BV	J79	M9BV	M9B	-	\bigcirc	\bigcirc	-	\bigcirc	-		
		Connector						J79C	-	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-			
	Diagnostic indication (2-color indication)	Grommet		3 -wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		F7NWV	F79W	F9NWV	F9NW	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	IC circuit		
				3-wire (PNP)				-	F7PW	F9PWV	F9PW	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc			
				2-wire		12 V		F7BWV	J79W	F9BWV	F9BW	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-		
	Water resistant (2-color indication)							-	F7BA	-	F9BA	-	\bigcirc	\bigcirc	-	\bigcirc			
								F7BAV	-	-	-	-	\bigcirc	\bigcirc	-	-			
	Diagosticic indication			4-wire(NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		-	F79F	-	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	IC circuit		
									* Solid	state switch	es mark	with "	O"	pro	duce	d upon	receipt	of order.	

- Refer to page 10-12-26 for details on other applicable auto switches than listed above.
- For details about auto switches with pre-wire connector, refer to page 10-20-66.

Cylinder Specifications

JIS Symbol

Mounting Bracket Part No．

Bore size (mm)	Foot＊	Flange	Double clevis
$\mathbf{1 2}$	CQ－L012	CQ－F012	CQ－D012
$\mathbf{2 0}$	CQ－L020	CQ－F020	CQ－D020
$\mathbf{3 2}$	CQ－L032	CQ－F032	CQ－D032
$\mathbf{4 0}$	CQ－L040	CQ－F040	CQ－D040
$\mathbf{5 0}$	CQ－L050	CQ－F050	CQ－D050
$\mathbf{6 3}$	CQ－L063	CQ－F063	CQ－D063

Note 1）When ordering the foot bracket．，order 2 pcs．per cylinder．
Note 2）Parts belonging to each bracket are as follows．
Foot，Flange／Body mounting bolts Double clevis／Clevis pin，type C snap ring for shaft，Body mounting bolts

Auto Switch Mounting Bracket Part No．

Bore size （mm）	Mounting bracket part no．	Note	Applicable auto switch
$\begin{aligned} & 12 \\ & 20 \end{aligned}$	BQ－1	－Switch mounting screw （M3 $\times 0.5 \times 8 \ell$ ） －Square nut	D－A7■／A80 D－A7 $\square \mathrm{H} / \mathrm{A} 80 \mathrm{H}$ D－A73C／A80C
$\begin{aligned} & 32 \\ & 40 \\ & 50 \\ & 63 \end{aligned}$	BQ－2	－Switch mounting screw （M3 $\times 0.5 \times 10 \ell$ ） －Switch spacer －Switch mounting nut	D－A79W D－F7口V D－F7口／J79 D－J79C D－F7口WV D－F7口W／J79W D－F7BAL／F7BAVL D－F79F／F7NTL

Sensor Specifications

Cable	ø7， 6 core twisted pair shielded wire（Oil，Heat \＆Flame resistant cable）
Maximum transmission distance	23 m （when using SMC cable and counter）
Position detection method	Magnetic scale rod ＜Non－rotating＞ Sensor head ＜Incremental type＞
Magnetic field resistance	14.5 mT
Power supply	10.8 to 26．4 VDC（Power supply ripple： 1% or less）
Current consumption	40 mA
Resolution	$0.1 \mathrm{~mm} /$ pulse
Accuracy	$\pm 0.2 \mathrm{~mm}\left(\mathrm{at} 20^{\circ} \mathrm{C}\right){ }^{(1)}$
Output type	Open collector（24 VDC， 40 mA ）
Output signal	A／B phase difference output
Insulation resistance	$500 \mathrm{VDC}, 50 \mathrm{M} \Omega$ or more（between case and 12E）
Vibration resistance	33．3 Hz，6．8 G 2 hrs．each in X，Y directions 4 hrs．in Z direction based upon JIS D 1601
Impact resistance	30 G 3 times each in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ directions
Enclosure	IP65（IEC Standard）${ }^{(2)}$ Except connector tor part
Extension cable（Option）	$5 \mathrm{~m}, 10 \mathrm{~m}, 15 \mathrm{~m}, 20 \mathrm{~m}$

Note 1 ）This includes the digital display error of the counter（CEU1，CEU5）．
Moreover，the overall accuracy after mounting on equipment will vary depending on the mounting conditions and the environment．Therefore，the customer should calibrate the equipment as a whole． Note 2）The cylinder section does not have a water resistant enclosure．

Standard Stroke

$\begin{aligned} & \text { Bore size } \\ & (\mathrm{mm}) \end{aligned}$	Stroke（mm）												Manufacturable stroke range
	25	50	75	100	125	150	175	200	250	300	400	500	
12	－	\bigcirc	－	－	－	－	－	－	－	－	－	－	25 to 150
20	－	\bigcirc	\bigcirc	－	－	－	－	－	－	－	－	－	25 to 300
32	－	－	\bigcirc	－	－	\bigcirc	－	\bigcirc	－	－	－	－	25 to 400
40	－	－	－	\bigcirc	－	\bigcirc	－	\bigcirc	\bullet	\bigcirc	\bigcirc	－	25 to 600
50	－	－	－	－	－	－	－	\bigcirc	－	－	－	－	25 to 600
63	－	－	－	－	－	－	－	\bullet	－	\bullet	－	－	25 to 600

＊Please contact SMC regarding non－standard strokes．
When the bore size is 12 mm and the stroke length is 100 mm or more，particular care should be taken regarding an offset load on the rod．

Weight (Without mounting bracket/connector)

Bore size (mm)	Cylinder stroke (mm)											
	25	50	75	100	125	150	175	200	250	300	400	500
12	0.29	0.33	0.36	0.4	0.43	0.47	-	-	-	-	-	-
20	0.51	0.58	0.65	0.72	0.79	0.86	0.93	1.0	-	-	-	-
32	-	0.94	1.05	1.15	1.26	1.36	1.47	1.58	1.79	2.0	-	-
40	-	-	-	1.7	1.83	1.95	2.08	2.2	2.45	2.7	3.2	3.7
50	-	-	-	-	-	-	-	3.4	-	4.1	-	5.5
63	-	-	-	-	-	-	-	4.2	-	5.0	-	6.6

Rod End Nut Dimensions

Material ø12, 20: Steel
ø32 to ø63: Rolled steel

Part no.	Applicable bore size (mm)	d	H	B	C	D
NTJ-015A	$\mathbf{1 2}$	$\mathrm{M} 5 \times 0.8$	4	8	9.2	7.8
NT-02	$\mathbf{2 0}$	$\mathrm{M} 8 \times 1.25$	5	13	15.0	12.5
NT-04	$\mathbf{3 2 , 4 0}$	$\mathrm{M} 14 \times 1.5$	8	22	25.4	21.0
NT-05	$\mathbf{5 0 , 6 3}$	$\mathrm{M} 18 \times 1.5$	$\mathbf{1 1}$	27	31.2	26

Electrical Wiring

Output type

The output signal of the stroke reading cylinder is A / B phase difference output (open collector output) as shown in the figure below.
The relation between the movement distance and the signal output of the stroke reading cylinder is that for each 0.1 mm of movement a one pulse signal is output to both output terminals A and B.
Furthermore, the maximum response speed of the sensor for the stroke reading cylinder is at a maximum cylinder speed of $1500 \mathrm{~mm} / \mathrm{s}(15 \mathrm{kcps})$.

Input/Output

The input/output of the stroke reading cylinder is performed by a $\varnothing 7$ shielded twisted pair wire from the sensor section plus a connector.

Output circuit of stroke reading cylinder
Signal

Contact signal	Wire color	Signal name
A	White	A phase
B	Yellow	B phase
C	Brown	COM $(0 \mathrm{~V})$
D	Blue	COM $(0 \mathrm{~V})$
E	Red	+12 to 24 V
F	Black	0 V
G	-	Shield

ø40 to ø63

No.	Description	Material	Note
(1)	Cylinder body	Aluminum alloy	
(2)	Rod cover	Brass	$\varnothing 12$ to $\varnothing 20$
		Aluminum alloy	$\varnothing 32$ to $\varnothing 63$
(3)	Head cover	Aluminum alloy	
(4)		Piston	Magnetic material
		Aluminum alloy	$\varnothing 20$ to $\varnothing 63$ (Built-in magnet)
(5)	Piston rod	Stainless steel	
(6)	Rod cover disk	Aluminum alloy	
(7)	Sensor unit	-	
(8)	Sensor setting bracket	Stainless steel	
(9)	Sensor setting piece assembly	-	$\varnothing 20$ to $\varnothing 63$
(10)	Pin	Stainless steel	$\varnothing 12$ to $\varnothing 32$
(11)	Sensor guide	Lead-bronze casted	$\varnothing 32$ to $\varnothing 63$
(12)	Case setting nut	Carbon steel	$\varnothing 32$ to $\varnothing 63$
(13)	Cushion ring A	Rolled steel	$\varnothing 40$ to $\varnothing 63$
(14)	Cushion ring B	Rolled steel	$\varnothing 40$ to $\varnothing 63$
(15)	Cushion valve	-	$\varnothing 40$ to $\varnothing 63$
(16)	Piston nut	Rolled steel	$\varnothing 40$ to $\varnothing 63$
(17)	Port joint	Stainless steel	$\varnothing 40$ to $\varnothing 63$

No.	Description	Material	Note
(18)	Wear ring	Resin	$\varnothing 40$ to ø63
(19)	Rod end nut	Carbon steel	
(20)	Sensor setting plate	Cold rolled special steel strip	
(21)	Type C snap ring	Carbon steel	
(22)	Magnet	-	
(23)	Round head Phillips screw	Carbon steel wire	
(24)	Cross recessed countersunk head screw	Carbon steel wire	
(25)	Hexagon socket head cap screw	Chromium molybdenum steel	
(26)	Spring washer	Steel wire	
(27)	Case gasket	NBR	
(28)	Case screw gasket	NBR	
(29)	Piston seal	NBR	
(30)	Rod seal	NBR	
(31)	Gasket	NBR	
(3)	Cushion seal	NBR	
(33)	Piston gasket	NBR	
(34)	Port seal	NBR	
(35)	Joint seal	NBR	
(36)	Valve seal	NBR	
(3)	Valve retainer seal	NBR	

* Since there is a possibility of improper operation, please contact SMC regarding the replacement of seals.

CE2
ML2B
$C^{\wedge} 55-S$
CV
MVGQ
CC
RB
J
D-
$-X$

Series CE1

Dimensions: ฮ12, ø20

Both ends tapped style:

CE1B Bore size Stroke

Bore size (mm)	Standard stroke	A	B	C	D	E	G	H	I	K	L
$\mathbf{1 2}$	$25,50,75,100,125,150$	94	69	15	6	25	42.5	M 5×0.8	16	5.2	25
$\mathbf{2 0}$	$25,50,75,100,125,150,175,200$	106	78	15.5	10	36	53.5	M 8×1.25	10	8	28

Bore size (mm)	\mathbf{N}	\mathbf{O}	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{T}^{*}	\mathbf{V}	\mathbf{Y}
$\mathbf{1 2}$	-	$\mathrm{M} 4 \times 0.7$	$\mathrm{M} 5 \times 0.8$	47	7	53.5	22	7
$\mathbf{2 0}$	5.5	$\mathrm{M} 6 \times 1$	$\mathrm{M} 5 \times 0.8$	50	15	62.5	36	5

* For rod nut and accessory bracket, refer to page 10-12-20. * Dimensions for auto switch model D-F79W.

Foot style:

Rod side flange style:

Head side flange style:

CE1G Bore size - Stroke

Double clevis style:

CE1D Bore size-Stroke

$\begin{aligned} & \text { Bore size } \\ & (\mathrm{mm}) \end{aligned}$	Foot style											Rod side flange, Head side flange					$\begin{array}{\|c\|} \hline \text { Head side flange } \\ \hline \mathbf{A} \\ \hline \end{array}$	Double clevis style							
	A	LA	LB	LD	LE	LH	LL	LS	LX	LY	LZ	FG	FL	FV	FX	FZ		A	CD	CL	CU	CW	CX	CZ	RR
12	106.5	4.5	8	4.5	29.5	17	2	85	34	52	44	4.5	5.5	25	45	55	99.5	114	5	108	7	14	5	10	6
20	121	5.8	9.2	6.6	42	24	3.2	96.4	48	66.5	62	6.6	8	39	48	60	114	133	8	124	12	18	8	16	9

Series CE1

Dimensions: ø32, ø40, ø50, ø63
Both ends tapped style:

CE1B Bore size-Stroke

Bore size (mm)	Standard stroke	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{I}	\mathbf{J}
$\mathbf{3 2}$	$50,75,100,125,150,175,200,250,300$	131	90	27	16	45	49.5	64	$\mathrm{M} 14 \times 1.5$	14	4.5
$\mathbf{4 0}$	$100,125,150,175,200,250,300,400,500$	177	136	27	16	52	57	71.5	$\mathrm{M} 14 \times 1.5$	24	5
$\mathbf{5 0}$	$200,300,500$	193	144	32	20	64	71	85.5	$\mathrm{M} 18 \times 1.5$	25.5	7
$\mathbf{6 3}$	$200,300,500$	194	145	32	20	77	84	98.5	$\mathrm{M} 18 \times 1.5$	21	7

Bore size (mm)	\mathbf{L}	\mathbf{M}	\mathbf{N}	\mathbf{O}	\mathbf{P}	\mathbf{Q}	\mathbf{T}^{*}	\mathbf{X}	\mathbf{Z}
$\mathbf{3 2}$	41	34	5.5	$\mathrm{M} 6 \times 1$	Rc $1 / 8$	56	57.5	30	14
$\mathbf{4 0}$	41	40	5.5	$\mathrm{M} 6 \times 1$	Rc $1 / 8$	62	64.5	30	14
$\mathbf{5 0}$	49	50	6.6	$\mathrm{M} 8 \times 1.25$	Rc $1 / 4$	61.5	76.5	35	19
$\mathbf{6 3}$	49	60	9	$\mathrm{M} 10 \times 1.5$	Rc $1 / 4$	64	89.5	35	19

* For rod nut and accessory bracket, refer to page 10-12-20. * Dimensions for auto switch model D-F79W.

Stroke Reading Cylinder Series CE1

Foot style:

CE1L Bore size Stroke

Rod side flange style:

CE1F Bore size Stroke

Head side flange style:

CE1G Bore size-Stroke

Double clevis style:

CE1D Bore size-Stroke

Bore size (mm)	Foot style											Rod side flange, Head side flange								$\begin{array}{c}\text { Head side } \\ \text { flange }\end{array}$ \mathbf{A}	Double clevis style								
	A	LA	LB	LD	LE	LH	LS	LT*	LX	LY	LZ	FD	FG	FL	FT*	FV	FX	FZ	M		A	CD	CL	CU	CW	CX	CZ	RR	T
32	148	5.8	11.2	6.6	52.5	30	112.4	65	57	72.5	71	5.5	69.5	8	59	48	56	65	34	139	161	10	151	14	20	18	36	10	57.5
40	195.2	7	11.2	6.6	59	33	158.4	71.5	64	79.5	78	5.5	76.5	8	65.5	54	62	72	40	185	209	10	199	14	22	18	36	10	64.5
50	215.7	8	14.7	9	71	39	173.4	83.5	79	94	95	6.6	91	9	78	67	76	89	50	202	235	14	221	20	28	22	44	14	76.5
63	219.2	9	16.2	11	84.5	46	177.4	97	95	109.5	113	9	107	9	91	80	92	108	60	203	238	14	224	20	30	22	44	14	89.5

* Dimensions for auto switch model D-F79W.

Series CE1

Proper Auto Switch Mounting Position (Detection at stroke end)

Proper Auto Switch Mounting Position

	$\begin{aligned} & \text { D-A7 } \\ & \text { D-A80 } \end{aligned}$		D-A7■H/A80H D-A73C/A80C D-F7口/J79 D-F7■V/J79C D-F7■W/J79W D-F7口WV D-F7BAL D-F7BAVL/F79F		D-A79W		D-F7NTL		$\begin{aligned} & \text { D-A9 } \square \\ & \text { D-A9 } \square \text { V } \end{aligned}$		$\begin{aligned} & \text { D-M9 } \\ & \text { D-M9 } \square \mathbf{V} \\ & \text { D-F9 } \square \mathbf{W} \\ & \text { D-F9 } \square \mathbf{W V} \end{aligned}$		D-F9BAL	
	A	B	A	B	A	B	A	B	A	B	A	B	A	B
12	40.5	4	41	4.5	38	2	46	9.5	39.5	3	43.5	7	42.5	6
20	47	13	47.5	13.5	44.5	10.5	52.5	18.5	46	12	50	16	49	15
32	55	17	5.5	17.5	52.5	14.5	60.5	22.5	54	16	58	20	57	19
40	79	39	79.5	39.5	76.5	36.5	84.5	44.5	78	38	82	42	81	41
50	82	44	82.5	44.5	79.5	41.5	87.5	49.5	81	43	85	47	84	46
63	85.5	41.5	86	42	83	39	91	47	84.5	40.5	88.5	44.5	87.5	43.5

Operating Range

Auto switch model	Bore size (mm)					
	12	20	32	40	50	63
$\begin{aligned} & \text { D-A7 } \square / \text { A80 } \\ & \text { D-A7H/A80H } \\ & \text { D-A73C/A80C } \end{aligned}$	10	12	12	11	10	12
D-A79W	13	13	13	14	14	16
D-A9 $\square /$ A9 \square V	-	-	9.5	9.5	9.5	11.5
D-F7 $\square / J 79$ D-F7■V/J79C D-F7 \square W/F7 \square WV D-J79W/F7NTL D-F7BAL/F7BAVL/F79F	5.5	5.5	6	6	6	6.5
D-M9■/M9 $\square \mathrm{V}$	-	-	4.5	4.5	4.5	4.5
$\begin{aligned} & \text { D-F9■W/F9■WV } \\ & \text { D-F9BAL } \end{aligned}$	-	-	5.5	5.5	5.5	6

* Since this is a guideline including hysteresis, not meant to be guaranteed. (Assuming approximately $\pm 30 \%$ dispersion)
There may be the case it will vary substantially depending on an ambient environment.
FOther than the applicable auto switches listed in "How to Order", the following I auto switches can be mounted. For detailed specifications, refer to page 10-20-1. I

Type	Model	Electrical entry (Fetching direction)	Features	Applicable bore size (mm)
Reed switch	D-A80	Grommet (Perpendicular)	Without indicator light	12 to 63
	D-A80H	Grommet (In-line)		
	D-A80C	Connector (Perpendicular)		
	D-A90	Grommet (In-line)		32 to 63
	D-A90V	Grommet (Perpendicular)		
I Solid state switch	D-F7NTL	Grommet (In-line)	With timer	12 to 63

I * With pre-wire connector is available for D-F7NTL type, too. For details, refer to page 10-20-66.
I * Normally closed (NC = b contact), solid state switch (D-F9G/F9H type) are also available. For details, refer to
page 10-20-40.

Series CEU/Series CE

Counter/Extension Cable

Multi-counter

High precision stroke reading cylinder

If the distance between high precision stroke reading cylinder and multi-counter is over 23 meter, use transmission box. (CE1-H0374)

BCD Connector Specifications
Model (counter side):
DX10M-36S (made by Hirose Electric Co., Ltd.)
Connector model:
DX30AM-36P (made by Hirose Electric Co., Ltd.)

Please consult with SMC separately for a BCD cable with connector.

CEP1
CE1

Series CEU5

Multi-counter/Specifications

Model	CEU5	CEU5-D	CEU5P	CEU5P-D	CEU5B	CEU5B-D	CEU5PB	CEU5PB-D
Type	Multi-counter							
Mounting	Surface mounting (DIN rail or Screw stop)							
Operating system	Adding - subtracting type							
Operation mode	Operating mode, Data setting mode, Function setting mode							
Reset system	External reset terminal							
Display system	LCD (With back light)							
Number of digits	6 digits							
Memory holding \{Storage medium\}	Setting value (always held), Count value (Hold/Non-hold switching), \{E²ROM (Warning display after writing approx. 800,000 times: E2FUL)\}							
Input signal type	Count input, Control signal input (Reset, Hold, Bank selection)							
Count input	No-voltage pulse input							
Pulse signal system	90° phase difference input *1/ UP/DOWN separate input*2							
Counting speed	100 kHz *1							
Control signal input	Voltage input (12 VDC or 24 VDC)							
Sensor power supply	10.8 to 13.2 VDC, 60 mA							
Output signal type	Preset output, Cylinder stop output				Preset output, Cylinder stop output, BCD output			
Preset output configuration	Compare/Hold/One-shot (100 ms fixed pulse)							
Output type	Separate 5 point output/Binary code output							
Output delay time	5 ms or less (for normal output)							
Communication system	RS-232C							
Output transistor mode	NPN open collector Max 30 VDC, 50 mA		PNP open collector Max 30 VDC, 50 mA		NPN open collector Max 30 VDC, 50 mA *3		PNP open collector Max 30 VDC, 50 mA *3	
Power supply voltage	90 to 264 VAC	21.6 to 26.4 VDC	90 to 264 VAC	21.6 to 26.4 VDC	90 to 264 VAC	21.6 to 26.4 VDC	90 to 264 VAC	21.6 to 26.4 VDC
Power consumption	20 VA or less	10 W or less	20 VA or less	10 W or less	20 VA or less	10 W or less	20 VA or less	10 W or less
Withstand voltage	Between case and AC line: 1500 VAC for 1 min . Between case and signal ground: 500 VAC for 1 min .							
Insulation resistance	Between case and AC line: $500 \mathrm{VDC}, 50 \mathrm{M} \Omega$ or more							
Ambient temperature	0 to $50^{\circ} \mathrm{C}$ (No freezing)							
Ambient humidity	35 to 85\% RH (No condensation)							
Noise resistance	Square wave noise from a noise simulator (pulse duration $1 \mu \mathrm{~s}$) between power supply terminals $\pm 2000 \mathrm{~V}, \mathrm{I} / \mathrm{O}$ line $\pm 600 \mathrm{~V}$							
Shock resistance	Endurance 10 to 55 Hz ; Amplitude $0.75 \mathrm{~mm} ; \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ for 2 hours each							
Impact resistance	Endurance $10 \mathrm{G} ; \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ directions, 3 times each							
Weight	350 g or less							

*1) 90° phase difference input

$\left.\begin{array}{l}\text { A: } \\ B: \\ C: \\ D: \\ t: 10 \mu \mathrm{sec} \text { or more required }\end{array}\right\} 2.5 \mu \mathrm{sec}$ or more required
Counting speed $\begin{aligned} f=\frac{1}{t}=\frac{1}{10 \times 10^{-6}} & =100000 \mathrm{~Hz} \\ & \cong 100 \mathrm{kHz}\end{aligned}$

* 2) UP/DOWN input

Input wave form conditions: At a maximum of 100 kHz , the UP/DOWN wave form should be as shown below.

* 3) 15 mA when BCD is output.

Multi-counter/Dimensions

Wiring with External Equipment

<Wiring with multi counter CEU5>

1. Wiring of power source for driving counter For power source for driving counter, use the one with 90 to $264 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ or 21.6 to 264 VDC, 0.4 A or more.
2. Wiring for control signal input (Selection among Reset, Hold, Bank)
Make each control signal to be the transistor which can run more than 15 mA or the contact output. Input time for reset signal should be more than 10 ms . Bank selection and hold will function only when the input signal is applied.
COM is common to each signal input. Applicable to NPN and PNP input. Use 24 VDC or 12 VDC for the power source of COM. Connect DCwhen PNP is applied, and DC+ when NPN is applied.

3. Output circuit

There are two outputs, the NPN open collector and the PNP open collector.
The maximum rating is $30 \mathrm{VDC}, 50 \mathrm{~mA}$. Operating the controller by exceeding this voltage and amperage could damage the electric circuit.
Therefore, the equipment to be connected must be below this rating.

Model	CEU5 \square - \square	CEU5P \square - \square
	NPN transistor output	PNP transistor output
Connection method		

* However, the COM of the input circuit and the COM of the output circuit are electrically insulated from each other.

Series CEU1

■ 3-point Preset Counter

How to Order

CEU1

- Counter drive power supply

Nil	100 VAC
D	24 VDC

Connection Method

Anti-noise performance will be improved by placing varistor, noise filter as a figure at right.
Shielding should be connected to FG (frame ground).
If sources of noise generation (motors, AC type valves, relays, etc.) are connected on the secondary side of the noise filter, the filter will have no effect.

When the distance between stroke reading cylinder and counter is over 23 m , use a transmission box (CE1-H0374).

3-point Preset Counter/Specifications

Model	CEU1	CEU1P	CEU1-D	CEU1P-D
Type	3-point preset counter			
Mounting	Surface mounting (DIN rail or Screw stop)			
Operating system	Adding - subtracting type			
Operation modes	Operating mode, Data setting mode			
Reset system	External reset terminal			
Display system	LCD (With back light)			
Number of digits	5 digits display (-9999.9 to 9999.9)			
Memory holding \{Storage medium\}	Preset data (always held) \{E ${ }^{2}$ ROM (Warning display after writing approx. 65,000 times: $i_{-\prime}^{\prime}$) $\}$			
Input signal type	Count input, Reset input			
Count input	No-voltage pulse input			
Pulse signal system	90° phase difference input			
Counting speed	20 kHz			
Reset input	R.S. and COM terminals are shorted for 10 ms or more (Pulse input)			
Sensor power supply	10.8 to 13.2 VDC, 60 mA			
Output signal type	Preset output			
Preset output configuration	Compare/Hold/One-shot (100 ms fixed pulse)			
Output delay time	5 ms or less			
Output transistor mode	NPN open collector Max. 30 VDC, 50 mA	PNP open collector Max. 30 VDC, 50 mA	NPN open collector Max. 30 VDC, 50 mA	PNP open collector Max. 30 VDC, 50 mA
Power supply voltage	80 to 120 VAC $50 / 60 \mathrm{~Hz}$		21.6 to 26.4 VDC	
Power consumption	10 VA or less		5 W or less	
Withstand voltage	Between case and AC line: 1500 VAC for 1 min. Between case and signal ground: 500 VAC for 1 min .			
Insulation resistance	Between case and AC line: 500 VDC, $50 \mathrm{M} \Omega$ or more			
Ambient temperature	0 to $50^{\circ} \mathrm{C}$ (without freezing)			
Ambient humidity	35 to 85\% RH (No condensation)			
Noise resistance	Square wave noise from a noise simulator (pulse duration $1 \mu \mathrm{~s}$) between power supply terminals $\pm 1500 \mathrm{~V}, \mathrm{I} / 0$ line $\pm 600 \mathrm{~V}$			
Shock resistance	Endurance 10 to 55 Hz ; Amplitude $0.75 \mathrm{~mm} ; \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ for 2 hours each			
Impact resistance	Endurance $10 \mathrm{G} ; \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ directions, 3 times each			
Weight	250 g or less			

3-point Preset Counter/Dimensions

Series CEU

Extension Cable
How to Order

Operating Condition of each Output Mode

One-shot Output

Without allowable values	With allowable values
When the counter value passes the preset value, output is turned ON for 100 ms .	When the counter value passes the sum of the preset value + the allowed value, output is turned ON for 100 ms .

Hold Output

Without allowable values	With allowable values
When the counter value passes the preset value, output is turned ON and that state is maintained. Output is cancelled when the power is turned off, the reset signal is input or when the setting value is changed.	When the counter value passes the sum of the preset value + the allowed value, output is turned ON. Output is cancelled when the power is turned off, the reset signal is input or when the setting value is changed.
When moving in $(+)$ direction OUT	

Compare Output

Without allowable values	With allowable values
Output is turned ON only when the counter value coincides with the preset value.	
When the counter value passes the sum of the preset value + the allowed value, output is turned ON.	
When moving in $(+)$ direction OUT moving in $(-)$ direction OUT	

Series CEU

CEU5 Operation
Parts description

Display detail

Key and Functions

Key	Functions
MODE	Changes the mode. In any given condition, it shifts to the next mode. Does not write data.
SEL.	Shifts the cursor to the next item. Does not write data.
SET	Writes displayed data into the memory when setting.
RIGHT	Shifts the cursor to the right when setting numerical values.
LEFT	Shifts the cursor to the left when setting numerical values.
UP	Changes the contents of a setting. Increases the value when setting numerical values.
DOWN	Changes the contents of a setting. Decreases the value when setting numerical values.

[^0]Mode cycle using mode key

Basic Operation

\(\left.\begin{array}{|ll}- SET key \& : In any of the conditions (1) through (5), this writes the display

data into the memory and shifts to (1).\end{array}\right\}\)| - SEL. key | : Shifts to the next item, but does not write data.
 - MODE key
 : In any given condition, this shifts to the next mode, but does
 not write data. |
| :--- | :--- |
| - Direction keys: LEFT/RIGHT keys shift the digits, and UP/DOWN keys
 increase or decrease numerical values. | |

1. Explanation of display in count mode

Normal output display
Displays current output bank
Binary output display
Displays only when matched with preset

Display of binary output selection
2. Setting of preset mode

Setting the preset values

- Shift the digits with the LEFT/RIGHT keys, and increase or decrease the numerical values with the UP/DOWN keys. - Shift to the next item with the SEL. key.

Setting the output configuration

(5)

- Switch to 1SHOT, HOLD or COMPARE with the UP/DOWN keys.
- Store the setting with the SET key
- The SEL. key only shifts to another item without storing the setting

Series CEU

CEU5 Operation

3. Explanation of settings in the function mode

If the UP/DOWN keys are pressed when an item name is flashing, it shifts to another setting item. When the SEL. key is pressed, the cursor shifts and it is possible to change the content of the setting for the item which is being displayed.

- The setting mode for stand-by time until stop output is commanded is selected by pressing the SEL key while STOP is flashing.
- Set numerical values with the direction keys.
- The unit is 0.1 sec .
- Store the setting with the SET key.
- The SEL. key only shifts the cursor without storing the setting.

- The output system setting mode is selected by pressing the SEL. key while OUTPUT is flashing
- Select normal output or binary output with the UP/DOWN keys.
- Store the setting with the SET key.
- The SEL. key only shifts the cursor without storing the setting.

- The input type setting mode is selected by pressing the SEL. key while INPUT is flashing.
- Select phase difference input with the UP/DOWN keys. (2PHASE) or separate input (UP/DOWN) with the UP/ DOWN keys.
- Store the setting with the SET key.
- The SEL. key only shifts the cursor without storing the setting.

- The count value backup setting mode is selected by pressing the SEL. key while BACKUP is flashing.
- Store the setting with the SET key.
- The SEL. key only shifts the cursor without storing the setting.

Series CEU

CEU1 Operation

Key and Functions

Key	Functions
MODE	Switches between the count mode and the setting mode.
SHIFT	Switches digits for preset data input and allowable value input. Shifts the flashing cursor to the left each time it is pressed.
SEL	In the setting mode, this switches the output terminal number which is to be set. Switches in the order OUT1 \rightarrow OUT2 \rightarrow OUT3 each time it is pressed.
DATA	In the setting mode, this changes numerical values, or codes and symbols. Numerical values increase by 1 each time it is pressed. For positive and negative codes, a minus sign turns on or off.
SET	Registers the setting contents in the setting mode. Press this key to perform registration after making setting changes. The setting will not be registered if the screen is changed by pressing the [MODE] or [SEL] keys without pressing the [SET] key.

The counter mode changes in the order shown below each time the [MODE] key is pressed.

- Output terminals 1 through 3 can be set separately.
- In the model CEU1, the allowable value is a \pm value.
(Only the model CEU5 is equipped with a function to set different values for the upper and lower limits.)

Series CE

Glossary (Functions of CEU5)

BCD Output

This is a system which expresses one digit of a decimal number with a 4 digit binary number.
The count value is expressed by the ON/OFF state of each BCD output terminal. In the case of 6 digits, 24 terminals are required.

The relation between decimal numbers and BCD codes is shown in the table below.

Decimal no.	0	1	2	3	4	5	6	7	8	9
BCD	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

Ex.) 1294.53 is expressed as follows.
000100101001010001010011

RS-232C

This is the interface standard for the serial transmission method, which is standard equipment on a personal computer.

Prescale Function

This function allows free setting of how many millimeters will indicate one pulse.

Binary Output

31 point preset output is possible without bank switching, by means of binary system output from a 5 point output terminal. Cylinder stop output is used as the readout release signal.

The coincident preset number is expressed as a 5 digit binary number.

Bank Function

5 points of preset output are possible simultaneously, however, a maximum of 20 types of work discrimination, etc. can be performed by using the 5 points of preset values as one of a maximum of four quadrats, and switching its use during operation.

For example, when bank 2 is selected, presets 6 through 10 are valid and when the count value coincides with the setting value of 6 through 10, the respective output terminals 1 through 5 are turned ON.

Bank Switching Correspondence

Bank no.	BANK2	BANK1
$\mathbf{1}$	OFF	OFF
$\mathbf{2}$	OFF	ON
$\mathbf{3}$	ON	OFF
$\mathbf{4}$	ON	ON

Series CE

Glossary (Functions of CEU5)

Display Offset Function

Normally the count value returns to " 0 " after resetting, but with this function, the initial value can be set to any desired value.

Hold Function

When "hold" is input, the counter holds the current count value in memory. Next, when the count value is read into a PLC which uses serial or BCD output, etc., the count value that was held can be read in, even if there is a time lag.

Setting the Tolerances of Preset Values

In the current model CEU1, the preset value tolerances could only be set as \pm, but now it has become possible to set an upper and lower limit of $+\bigcirc \mathrm{mm}$ and $-\triangle \mathrm{mm}$.

By including preset tolerance setting, superior performance is exhibited in parts inspections, etc. In a workpiece to be measured, there are tolerances which assure a good product. For example, in the case of $10_{-0.02}^{+0.05}$, the CEU5 allows these tolerances to be input as they stand. If the workpiece is within tolerances the OK signal is sent.
On the other hand, in ordinary counters, no. 1 is set to 9.98 and no. 2 is set to 10.06 , and if no. 1 is ON and no. 2 is OFF, an acceptance decision is made. 2 points of output are used in order to check whether or not the product is within dimension tolerances. In this example, one preset of the CEU5 performs the same function as two presets of an ordinary counter.
<Simple input as per drawing dimensions> Tolerances can be set with the preset value.

Count Value Protection

In the past, the count value returned to "0" when the power supply was cut off, but this function holds the previous value even after a power failure. This function can be switched between active and inactive settings.

Stroke Reading Cylinder with Brake

Series CE2
ø40, ø50, ø63, ø80, ø100

Stroke Reading Cylinder with Brake/CE2 Controller/CEU2

A cylinder capable of highly reproducible positioning (stopping accuracy of $\pm 0.5 \mathrm{~mm}$) has been created by adding a brake mechanism to a stroke reading cylinder which can measure stroke length.

Brake mechanism

Employs a combination spring and pneumatic lock type.

When there is a drop in air pressure, the workpiece is held by a spring lock.

Locking in both directions is possible.

Locking in either side of cylinder stroke is possible, too.

Working Principle of Brake Mechanism

Measuring

Smallest measuring unit 0.1 mm
Magnetic scale rod and built-in detection head
Relation between displacement and output pulse on stroke reading cylinder

System configuration

For safety measures
Stroke reading cylinder with brake + Counter

- Prevents dropping from raised positions during intermediate stops.

3 point preset counter: Series CEU1 Multi-counter

Stroke reading cylinder with brake + Controller ($\left.\begin{array}{l}\text { Brake positioning } \\ \text { system }\end{array}\right)$

- Positioning with high reproducibility has been achieved by prediction control and learning function.
- The stop position will be automatically redressed by re-try function.

Controller: Series CEU2

For precision positioning

(Stopping accuracy $\pm 0.5 \mathrm{~mm}$)

Predicts overrun distance based on cylinder size, cylinder speed and load rate.

Application example

2. For sorting workpieces
Sorts workpieces by positioning the cylinder according to the workpiece.

3. For placing workpieces in boxes
By adopting an $X-Y$ table configuration, the cylinder can position workpieces in boxes.

Flow Chart to Confirm Utility of Stroke Reading Cylinder with Brake

Depending on the operating conditions, stable stopping accuracy may not be obtained. Therefore, make sure to follow the flow chart shown below.

Handling Technical Material

Be sure to read before handling brake positioning system (CE2+CEU2).

\triangle Precautions

Be sure to read before handling. For Safety Instructions I and Actuator Precautions, refer to page 10-24-3 to 10-24-6.

Caution

Sensor

Because a magnetic system is adopted in the sensor unit of the stroke reading cylinder with brake, the presence of a strong magnetic fields in the vicinity of the sensor could lead to a malfunction.

Operate the system with an external magnetic field of 14.5 mT .
IThis is equivalent to a magnetic field of approximately $\mathbf{1 8} \mathbf{- 1 8} \mathbf{c m}$ in radius Ifrom a welding area using a welding amperage of almost 15,000 I I amperes. To use the system in a magnetic field that exceeds this value, I I use a magnetic material to shield the sensor unit.

The sensor unit is adjusted to an appropriate position at the time of shipment. Therefore, never detach the sensor unit from the body. Make sure that water does not splash on the sensor unit (enclosure IP65). Do not pull on the sensor cord

Noise

Operating the stroke reading cylinder with brake in the vicinity of equipment that generates noise, such as a motor or a welder, could result in miscounting. Therefore, minimize the generation of noise as much as possible, and keep the wiring separate
Also, the maximum transmission distance of the stroke reading cylinder with brake is 20.5 m . Make sure that the wiring does not exceed this distance. Besides, when the transmission distance is over 20.5 m , use the dedicated transmission box (Part no. CE1-H0374).

How to Manually Disengage the Lock and Change from the Unlocked to the Locked State

Manual unlocking

To manually disengage the lock, perform the following steps:

1. Loosen the two hexagon socket head cap bolts and remove the pin guide.
2. As viewed from the end of the rod, the pin is tilted 15° to the left of the center. Using a wooden mallet so as not to scratch the pin, rotate it 30° clockwise.
3. Rotating the pin 30° while moving it towards the rod end enables the lock to disengage.
4. To re-engage the lock, perform the following steps.

How to manually change from an unlocked state to a locked state
To change from an unlocked state to a locked state: Unlike the procedure for manually disengaging the lock, never rotate the pin by striking it, as it could bend or damage the pin. The lock is disengaged at the time of shipment. Therefore, after performing the mounting and centering adjustments, make sure to perform these steps before operating the unit:

1. Loosen the two hexagon socket head cap bolts and remove the pin guide.
2. As viewed from the end of the rod, the pin is tilted 15° to the right of the center.
3. Supply air pressure of 0.3 MPa to the unlocking port.
4. Using a wooden or plastic rod, such as the handle of a wooden mallet, push the pin and rotate it 30° counterclockwise.
5. Inside the pin guide, there is a slotted hole that is slightly larger than the pin. Align the pin with the slotted hole and secure them to the cover, using the hexagon socket bolts that were removed in step 1. The protruding portion of the pin guide will then align with the LOCK mark on the nameplate that is attached to the cover surface.

\triangle Caution

1. Operate the cylinder in such a way that the load is always applied in the axial direction.
In case the load is applied in a direction other than the axial direction of the cylinder, provide a guide to constrain the load itself. In such a case, take precautions to prevent off-centering. If the piston rod and the load are off-centered, the speed of the movement of the piston could fluctuate, which could affect the piston's stopping accuracy and shorten the life of the brake unit.
2. If there is a large amount of dust in the operating environment, use a cylinder with a bellows to prevent the intrusion of dust.
Also, be aware that the operating temperature range is between 0 and $60^{\circ} \mathrm{C}$.
3. The brake unit and the cylinder rod cover area are assembled as shown in the diagram on the right. For this reason, unlike ordinary cylinders, it is not possible to use the standard style mounted directly onto a machine by screwing in the cylinder tie-rods.
Furthermore, when replacing mounting brackets, the unit holding tie-rods may get loosen. Tighten them once again in such a case.
Use a socket wrench when replacing mounting brackets or retightening the unit holding tie-rods.

Operating Cautions

Counting speed of the counter

Be aware that if the speed of the stroke reading cylinder with brake is faster than the counting speed of the counter, the counter will miscount.

```
    Cylinder speed < Counting speed of the counter
(Cylinder speed 500 mm/sec = Counting speed of the counter 5 kcps)
```


Bore size (mm)	Mounting bracket nut		Unit holding tie-rod		
	Nut	Width across flats	Socket	Width across flats	Socket
$\mathbf{5 0}$	JIS B 1181 Class 3 M8 x 1.25	13	JIS B 4636 2point angle socket 13	10	JIS B 4636 2 point angle socket 10
$\mathbf{6 3}$	JIS B 1181 Class 3 M10 x 1.25	17	JIS B 4636 2point angle socket 17	13	JIS B 4636 2 point angle socket 13
$\mathbf{8 0}$ $\mathbf{1 0 0}$	JIS B 1181 Class 3 M12 x 1.75	19	JIS B 4636 2point angle socket 19	17	JIS B 4636 2 point angle socket 13

Air balance

Unlike the conventional pneumatic cylinder that performs a simple reciprocal movement, the stroke reading cylinder with a brake also makes intermediate stops. Thus, it must maintain the proper air balance in a stopped state.
Therefore, the proper air balance must be established in accordance with the mounting orientation of the cylinder.
Use caution the piston rod may be lurched when the next motion gets started after the intermediate stops or commence the operation after the reverse motion gets done, unless the air balance is taken. It may result in degrading its accuracy.

Supply pressure

If line pressure is used directly as supply pressure, any fluctuation in pressure will appear in the form of changes in cylinder characteristics. Therefore, make sure to use a pressure regulator to convert line pressure into supply pressure for the actuating valve and the brake valve. In order to actuate multiple cylinders at once, use a pressure regulator that can handle a large air flow volume and also consider installing a surge tank.

Stroke Reading Cylinder with Brake Series CE2

ø40, ఠ50, ఠ63, ø80, ø100

How to Order

Applicable Auto Switch/Refer to page 10-20-1 for further information on auto switches.

						oad volta	age	Auto sw	model	Lead wir	ngth	(m)*				
Type	Special function	Electrical entry	$\begin{aligned} & \text { 흘 } \\ & \frac{\text { 흘 }}{0} \end{aligned}$	Wiring (Output)		C	AC	Tie-rod mounting	Band mounting	$\begin{gathered} 0.5 \\ \text { (Nil) } \end{gathered}$	$\begin{array}{\|c} \hline 3 \\ (\mathrm{~L}) \\ \hline \end{array}$	$\begin{gathered} 5 \\ (\mathrm{Z}) \end{gathered}$	Pre-wire connector	Applicab	ble load	
				3-wire (NPN equivalent)	-	5 V	-	Z76	-	\bigcirc	-	-	-	IC circuit	-	
ᄃ		Grommet					100 V	Z73	-	\bigcirc	-	\bigcirc	-		Relay, PLC	
3							-	-	B53	\bigcirc	\bigcirc	\bigcirc	-		PLC	
©	-					12 V	$100 \mathrm{~V}, 200 \mathrm{~V}$	A54	B54	\bigcirc	\bigcirc	\bigcirc	-		$\overline{\text { Relay, PLC }}$	
$\underset{\sim}{\infty}$		Terminal	$\stackrel{\square}{\sim}$	2-wire	24 V	12 V	-	A33C	A33	-	-	-	-	-	PLC	
		conduit						A34C	A34	-	-	-	-			
		DIN terminal					$100 \mathrm{~V}, 200 \mathrm{~V}$	A44C	A44	-	-	-	-		Relay,	
	Diagnostic indication (2-color indication)	Grommet				-	-	A59W	B59W	\bigcirc	\bigcirc	-	-			
	-	Grommet	$\stackrel{\varnothing}{\square}$	3-wire (NPN)	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	-	Y59A	G59	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC circuit	Relay, PLC	
				3-wire (PNP)				Y7P	G5P	-	-	\bigcirc	\bigcirc			
					-	-	$100 \mathrm{~V}, 200 \mathrm{~V}$	J51	-	\bigcirc	-	\bigcirc	-			
				2-wire	24 V	12 V	-	Y59B	K59	\bigcirc	\bullet	\bigcirc	\bigcirc			
		Terminal		3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		G39C	G39	-	-	-	-	IC circuit		
		conduit		2-wire		12 V		K39C	K39	-	-	-	-	-		
	Diagnostic indication (2-color indication)	Grommet		3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		Y7NW	G59W	\bigcirc	\bigcirc	\bigcirc	\bigcirc	IC circuit		
				3-wire (PNP)				Y7PW	G5PW	\bigcirc	\bigcirc	\bigcirc	\bigcirc			
				2-wire		12 V		Y7BW	K59W	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-		
	Water resistant (2-color indication)			Y7BA				G5BA	-	\bigcirc	\bigcirc	\bigcirc				
	With diagnostic output (2-color indication)			4-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		F59F	G59F	\bigcirc	-	\bigcirc	\bigcirc	IC circuit		
$\begin{array}{ll} \hline \text { * Lead wire length symbols: } & 0.5 \mathrm{~m} \ldots \ldots \mathrm{Nil} \\ 3 \mathrm{~m} \ldots \ldots \ldots . . \mathrm{L} \\ 5 \mathrm{~m} \ldots \ldots \ldots . \mathrm{Z} \end{array}$					(Example) A54 (Example) A54L (Example) A54Z		* Solid state switches marked with "○									

[^1]

Model

Series	Type	Action	Bore size (mm)	Rod Action
CE2	Non-lube	Double acting	$40,50,63$ 80,100	Spring and pneumatic lock

Rod Boot Material

Symbol	Rod boot material	Maximum ambient temperature
\mathbf{J}	Nylon tarpaulin	$60^{\circ} \mathrm{C}$
\mathbf{K}	Neoprene cross	$110^{\circ} \mathrm{C}^{*}$

* Maximum ambient temperature for the rod boot itself.

Cylinder Specifications

Bore size (mm)	40	50	63	80	100
Fluid	Air (Non-lube)				
Proof pressure	1.5 MPa				
Maximum operating pressure	Driving pressure 1 MPa ; Brake pressure 0.5 MPa				
Minimum operating pressure	Driving pressure 0.1 MPa; Brake pressure 0.3 MPa				
Piston speed	50 to $500 \mathrm{~mm} / \mathrm{s}^{*}$				
Ambient temperature	0 to $60^{\circ} \mathrm{C}$ (No freezing)				
Brake system	Spring and pneumatic lock type				
Sensor cord length	$\varnothing 7-500 \mathrm{~mm}$ Oil-resistant				
Thread tolerance	JIS Class 2				
Stroke length tolerance	Up to 250 mm : ${ }_{0}^{1.0}, 251 \mathrm{~mm}$ to $1000 \mathrm{~mm}{ }_{0}^{+1.4}$				

* Be aware of the constraints in the allowable kinetic energy.

Sensor Specifications

Cable	$ø 7,6$ core twisted pair shielded wire (Oil, Heat \& Flame resistant cable)
Maximum transmission distance	20.5 m (when using SMC cable and counter)
Position detection method	Magnetic scale rod/Sensor head <Incremental type>
Magnetic field resistance	14.5 mT
Power supply	10.8 to 13.2 VDC (Power supply ripple: 1% or less)
Current consumption	40 mA
Resolution	$0.1 \mathrm{~mm} /$ pulse
Accuracy	$\pm 0.2 \mathrm{~mm}^{\text {Note) }}$
Output type	Open collector (Max. $35 \mathrm{VDC}, 80 \mathrm{~mA}$)
Output signal	A/B phase difference output
Insulation resistance	$500 \mathrm{VDC}, 50 \mathrm{M} \Omega$ or more (between case and 12E)
Vibration resistance	33.3 Hz, 6.8 G 2 hrs. each in X, Y directions 4 hrs. in Z direction based upon JIS D 1601
Impact resistance	$30 \mathrm{G}, 3$ times at X, Y, Z
Enclosure	IP65 (IEC standard) Except connector part
Extension cable (Option)	$5 \mathrm{~m}, 10 \mathrm{~m}, 15 \mathrm{~m}, 20 \mathrm{~m}$

Note) Digital error under Controller (CEU2), Counter (CEU1 or CEU5) is included. Besides, the whole accuracy after mounting on an equipment may be varied depending on the mounting condition and surroundings. As an equipment, calibration should be done by customer.

Auto Switch Mounting Bracket Part No.

Auto switch model	Bore size (mm)				
	BT-04	BT-04	BT-06	BT-08	BT-08
D-A3 $\square / A 44 ~$ D-G39/K39	BD1-04M	BD1-05M	BD1-06M	BD1-08M	BD1-10M
D-B5 $\square / B 64 ~$ D-B59W D-G5 $\square / K 59 ~$					
D-G5 $\square W / K 59 W ~$	BA-04	BA-05	BA-06	BA-08	BA-10
D-G5BAL D-G59F/G5NTL					
D-A3 \square C/A44C D-G39C/K39C	BA3-040	BA3-050	BA3-063	BA3-080	BA3-100
D-Z7 $\square / Z 80 ~$ D-Y59 $\square / Y 69 ~$ D-Y7P/Y7PV D-Y7 $\square W$	BA4-040	BA4-040	BA4-063	BA4-080	BA4-080
D-Y7 $\square W V$ D-Y7BAL					

* Mounting bolt is attached to D-A3ロC, A44C, G39C, and K39C.
* To order, indicate as shown below, according to the cylinder size.
(Example) ø40…..D-A3 $\square \mathrm{C}-4, ~ ø 63 \ldots . . . \mathrm{D}-\mathrm{A} 3 \square \mathrm{C}-6, ~ \varnothing 100 \cdots . . . \mathrm{D}-\mathrm{A} 3 \square \mathrm{C}-10$ $ø 50 \cdots D-A 3 \square C-5, ~ ø 80 \cdots D-A 3 \square C-8$

Standard Stroke

Bore size (mm)	Standard stroke (mm)		Range of manufacturable stroke	
	Without rod boot	With rod boot	Without rod boot	With rod boot
$\mathbf{4 0}$	25 to 850	25 to 700	Up to 1200	Up to 950
$\mathbf{5 0}$	25 to 800	25 to 650	Up to 1150	Up to 900
$\mathbf{6 3}$	25 to 800	25 to 650	Up to 1150	Up to 900
$\mathbf{8 0}$	25 to 750	25 to 600	Up to 1100	Up to 900
$\mathbf{1 0 0}$	25 to 750	25 to 600	Up to 1100	Up to 850

Weight							(kg)
Bore size (mm)			40	50	63	80	100
Basic weight	Basic style		2.18	3.39	5.29	8.66	12.09
	Foot style		2.37	3.61	5.63	9.33	13.08
	Flange style		2.55	3.84	6.08	10.11	14.01
	Single clevis style		2.41	3.73	5.92	9.77	13.87
	Double clevis style		2.45	3.82	6.08	10.06	14.39
	Trunnion style		3.63	3.92	6.18	10.36	14.49
Additional weight per each 20 mm of stroke	Aluminum tube	Mounting bracket	0.22	0.28	0.37	0.52	0.65
Accessory bracket	Single knuckle		0.23	0.26	0.26	0.60	0.83
	Double knuckle		0.32	0.38	0.38	0.73	1.08
	Knuckle pin		0.05	0.05	0.05	0.14	0.19

Series CE2

Bore size (mm)	Stroke range		A	AA	AL	BB	BL	$\square \mathrm{B}$	C	CC	$\square \mathbf{C}$	D	D	E	EE	E	F	FF	GA	GB	GC	GD	GL	H_{1}	J	K	M
	Without rod boot	With rod boot																									
40	25 to 850	25 to 700	30	45	27	71.5	22	60	42	20	44	22	16	21	11	32	10	10	150.5	15	26	54	10	8	M8 x 1.25	6	11
50	25 to 800	25 to 650	35	50	32	80.5	27	70	46	21	52	24	20	28.5	10	40	10	12	162.5	17	27	59	13	11	M8 $\times 1.25$	9	11
63	25 to 800	25 to 650	35	60	32	98.5	27	85	48.5	23	64	24	20	28.5	13	40	10	15	174	17	26	67	18	11	M10 $\times 1.25$	9	13.5
80	25 to 750	25 to 600	40	70	37	117.5	32	102	55	23	78	26.5	25	36	15	52	14	17	189	21	30	72	23	13	M12 $\times 1.75$	11	16.5
100	25 to 750	25 to 600	40	80	37	131.5	41	116	56.5	25	92	35.5	30	36	15	52	14	19	198	21	31	76	25	16	M12 1.75	11	16.5

Bore size (mm)	MM	N	NN	P	S	W	Without rod boot		With rod boot				
							H	ZZ	e	f	h	ℓ	ZZ
40	M14 $\times 1.5$	27	161.5	1/4	218.5	8	51	280.5	43	11.2	59	$\begin{gathered} 1 / 4 \\ \text { stroke } \end{gathered}$	288.5
50	M18 $\times 1.5$	30	175.5	3/8	235.5	0	58	304.5	52	11.2	66		312.5
63	M18 $\times 1.5$	31	187	3/8	254	0	58	326	52	11.2	66		334
80	$\mathrm{M} 22 \times 1.5$	37	205	1/2	284	0	71	372	65	12.5	80		381
100	M26 x 1.5	40	214	1/2	300	0	72	389	65	14	81		398

Foot style

Bore size (mm)	B	LH	LS	LX	\mathbf{X}	\mathbf{Y}	ZZ	LD
$\mathbf{4 0}$	58.5	40	272.5	42	27	13	309.5	9
$\mathbf{5 0}$	68.5	45	289.5	50	27	13	333.5	9
$\mathbf{6 3}$	83	50	322	59	34	16	362	11.5
$\mathbf{8 0}$	100	65	372	76	44	16	415	13.5
$\mathbf{1 0 0}$	114	75	386	92	43	17	432	13.5

Rod side flange style

Head side flange style

Single clevis style

Bore size (mm)	Rod side flange, Head side flange						Rod side flange		Single clevis, Double clevis						Double clevis	Center trunnion			
	FT	FV	FX	FY	FZ	FD	B	BB	CD ${ }^{\text {H10 }}$	CX	L	RR	U	Z	CZ	TDe8	TX	TZ	Z
40	12	60	80	42	100	9	71	76.5	$10^{+0.058}$	$15_{+0.1}^{+0.3}$	30	10	16	299.5	29.5	$15_{-0.059}^{-0.032}$	85	117	224.5
50	12	70	90	50	110	9	81	88.5	$12^{+0.070}$	$18_{+0.1}^{+0.3}$	35	12	19	328.5	38	$15{ }_{-0.059}^{-0.032}$	95	127	248.5
63	15	86	105	59	130	11.5	101	106	$16{ }^{+0.070}$	$25_{+0.1}^{+0.3}$	40	16	23	352	49	$18_{-0.059}^{-0.032}$	110	148	263
80	18	102	130	76	160	13.5	119	112.5	$20{ }_{0}^{+0.084}$	$31.5_{+0.1}^{+0.3}$	48	20	28	403	61	$25_{-0.073}^{-0.040}$	140	192	297
100	18	116	150	92	180	13.5	133	139.5	$25+0.084$	$35.5{ }_{+0.1}^{+0.3}$	58	25	36	430	64	25-0.0.073	162	214	309

Bore size (mm)	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
Axial foot *	CA1-L04	CA1-L05	CA1-L06	CA1-L08	CA1-L10
Flange	CA1-F04	CA1-F05	CA1-F06	CA1-F08	CA1-F10
Single clevis	CA1-C04	CA1-C05	CA1-C06	CA1-C08	CA1-C10
Double clevis **	CA1-D04	CA1-D05	CA1-D06	CA1-D08	CA1-D10

Series CE2

Construction

Component Parts

No.	Description	Material	Note
(1)	Rod cover	Aluminum alloy	Black painted after hard anodized
(2)	Head cover	Aluminum alloy	Black painted
(3)	Cover	Aluminum alloy	Black painted after hard anodized
(4)	Cylinder tube	Aluminum alloy	Hard anodized
(5)	Piston rod	Free-cutting steel	Hard chrome plated
(6)	Piston	Aluminum alloy	Chromated
(7)	Brake piston	Carbon steel	Nitrided
(8)	Brake arm	Carbon steel	Nitrided
(9)	Arm holder	Carbon steel	Nitrided
(10)	Brake shoe holder	Carbon steel	Nitrided
(11)	Brake shoe	Special friction material	
(12)	Roller	Chromium molybdenum steel	Nitrided
(13)	Pin	Chrome bearing steel	Heat treated
(14)	Snap ring	Stainless steel	JIS B 2805E
(15)	Brake spring	Steel wire	Dacrodized
(16)	Retaining plate	Rolled steel plate	Zinc chromated
(17)	Cushion ring A	Rolled steel	Electroless nickel plated
(18)	Cushion spear B	Rolled steel	Electroless nickel plated
(19)	Bushing	Lead-bronze casted	
(20)	Bushing	Lead-bronze casted	
(21)	Cushion valve	Rolled steel plate	Electroless nickel plated
(22)	Tie-rod	Carbon steel	Chromated
(23)	Unit holding tie-rod	Carbon steel	Chromated

No.	Description	Material	Note
(24)	Piston nut	Rolled steel plate	Zinc chromated
(25)	Non-rotating pin	Carbon steel	High frequency quenched
(26)	Pin guide	Carbon steel	Black painted after hard anodized
(27)	Tie-rod nut	Carbon steel	Black zinc chromated
(28)	Lock nut	Carbon steel	Nickel plated
(29)	Hexagon socket head cap screw	Chromium molybdenum steel	Black zinc chromated
(30)	Hexagon sockethead cap screw	Stainless steel	
(31)	Spring washer	Steel wire	Black zinc chromated
(32)	Spring washer	Steel wire	Black zinc chromated
(33)	Spring washer	Steel wire	Black zinc chromated
(34)	Spring washer	Steel wire	Black zinc chromated
(35)	Spring washer	Steel wire	Zinc chromated
(36)	Bracket assembly	Carbon steel	
(37)	Detection head assembly	-	
(38)	Connector	-	
(39)	Cable	-	
(40)	Rubber magnet	NBR	
(41)	Wear ring	Resin	
(42)	Gasket	NBR	
(43)	Bushing	NBR	
(44)	Amp cushion	NBR	
(45)	Seal retainer	Aluminum alloy	
(46)	Coil scraper	Phosphor bronze	

Seal List

No.	Description	Material	Part no.				
			Bore size (mm)				
			40	50	63	80	100
(47)	Piston seal	NBR	NLP-40A	NLP-50A	NLP-63A	NLP-80A	NLP-100A
(48)	Rod seal A	NBR	PDU-16Z	PDU-20Z	PDU-20Z	PDU-25Z	PDU-30Z
(49)	Rod seal B	NBR	PSD-22 x 16	PSD-27 x 20	PSD-27 x 20	PSD-33 $\times 25$	PSD-38 x 30
(50)	Brake piston seal	NBR	P44	P50	P60	P75	P90
(51)	Cushion seal	NBR	DSM-20	DSM-25	DSM-25	DSM-30	DSM-35
(52)	Piston gasket	NBR	CA40-1606	CA63-1608	CA63-1608	CA80-1609	CA100-1610
(53)	Tube gasket	NBR	CA40-1601	CA50-1602	CA63-1603	CA80-1604	CA100-1605
(54)	Cushion valve seal	NBR	P3	P3	P3	P5	P5

[^2]

Material: Rolled steel										
Part no.	Applicable bore size (mm)	\mathbf{d}	\mathbf{H}	\mathbf{B}	\mathbf{C}	D				
NT-04	$\mathbf{4 0}$	$\mathrm{M} 14 \times 1.5$	8	22	25.4	21				
NT-05	$\mathbf{5 0 , 6 3}$	$\mathrm{M} 18 \times 1.5$	11	27	31.2	26				
NT-08	$\mathbf{8 0}$	$\mathrm{M} 22 \times 1.5$	13	32	37.0	31				
NT-10	$\mathbf{1 0 0}$	$\mathrm{M} 26 \times 1.5$	16	41	47.3	39				

Allowable Kinetic Energy

Operate the stroke reading cylinder with brake within the proper allowable kinetic energy. It must not be operated out of the allowable range, which is shown in the graph on the right. All sizes must be operated within this range. (Supply pressure 0.5 MPa)

Operating Range

Auto switch model	Bore size (mm)				
	40	50	63	80	100
D-Z7口/Z80	8	7	9	9.5	10.5
$\begin{aligned} & \text { D-A3 } \square / \text { A44 } \\ & \text { D-A3 } \square \text { C, D-A44C } \end{aligned}$	9	10	11	11	11
D-A5 $\square / \mathrm{A} \square \square$					
D-B5 $\square / \mathrm{B64}$					
D-A59W	13	13	14	14	15
D-B59W	14	14	17	16	18
D-Y5■/Y6■ D-Y7P/Y7PV D-Y7■W/Y7口WV	8	7	5.5	6.5	6.5
D-Y7BAL	3.5	3.5	5	5	5
D-F5 $\square / \mathrm{J} 5 \square$ D-F5 \square W/J59W D-F5BAL/F5NTL D-F59F	4	4	4.5	4.5	4.5
$\begin{aligned} & \text { D-G5 } \square / K 59 \\ & \text { D-G5 } \square \text { W/K59W } \\ & \text { D-G5NTL/G5BAL } \end{aligned}$	5	6	6.5	6.5	7
D-G59F	6	7	7.5	7.5	8
$\begin{aligned} & \text { D-G39/K39 } \\ & \text { D-G39C, D-K39C } \end{aligned}$	9	9	10	10	11

[^3]
Controller/CEU2

Controller CEU2/Specifications

* Refer to operation manual of CEU2 regarding detailed positioning system.

Dimensions

[^4]
<Wiring with controller CEU2>

1. Wiring of driving power of controller

To operate the controller, use a power supply with the following specifications: 90 to $110 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$, and 21.6 to $26.4 \mathrm{VDC}, 0.4 \mathrm{~A}$ or higher.

3. Output circuit

There are two outputs, the NPN open collector and the PNP open collector. The maximum rating is $30 \mathrm{VDC}, 50 \mathrm{~mA}$. Operating the controller by exceeding this voltage and amperage could damage the electric circuit. Therefore, the equipment to be connected must be below this rating.
Model

* However, on the valve output side, the COM of the input circuit and the COM of the output circuit are electrically insulated from each other.

2. Input circuit

The voltage and the amperage capacity of the switch or the PLC to be connected are $24 \mathrm{VDC}, 10 \mathrm{~mA}$ or higher.

4. Valve output circuit

The maximum rating is $24 \mathrm{VDC}, 80 \mathrm{~mA}$. Operating the controller by exceeding this voltage and amperage could damage the electric circuit. Therefore, the equipment to be connected must be below this rating.

[^0]: In the explanations of the operating method, references to "Direction keys" indicate the 4 keys RIGHT, LEFT, UP and DOWN.

[^1]: - Since there are other applicable auto switches than listed, refer to page 10-12-53 for details.
 - For details about auto switches with pre-wire connector, refer to page 10-20-66.

[^2]: * Since there is a possibility of improper operation, please contact SMC regarding the replacement of seals.

[^3]: * Since this is a guideline including hysteresis, not meant to be guaranteed.
 (Assuming approximately 30% dispersion.)
 There may be the case it will vary substantially depending on an ambient environment.

[^4]: As for 3 point preset counter and multi counter, it will be common to CEP1 and CE1 series. For details, refer to 3 point preset counter/CEU1 on page 10-12-30, and Multi counter/CEU5 on page 10-12-27 respectively.

