Low-Speed Rotary Actuator

CRQ2X/MSQX Series

CRQ2 Size: 10, 15, 20, 30, 40 MSQX Size: 10, 20, 30, 50

Possible to transfer a workpiece at low-speed.

Rotation time adjustment range: **1** to **5** ($s/90^{\circ}$)

1	Model	Size	Rotati	on time	adjustmo 2 (ent rang 3 4	e (s/90°) 1 5	5
Low-	CRQ2X	10, 15, 20, 30, 40		1 to 5 (0.7 to 5 fo	pr CRQ2>	(□10,15)	Γ
speed	MSQX	10, 20, 30, 50				1		
Ctondord	CRQ2	10, 15, 20, 30, 40	0.2 to	1 (0.2 to	0.7 for C	RQ2□10	,15)	
Stanuaru	MSQ	10, 20, 30, 50					1	

Realized a stable motion at 5 s/90°.

Measurement conditions / Fluid: Air

Mounting orientation: Vertical without load Operating pressure: 0.5 MPa Pneumatic circuit: Meter-out circuit Ambient temperature: Room temperature

CRQ2X/MSQX Series Model Selection

* The selection procedure of the rotary for low-speed is the same as for an ordinary rotary. If the rotation time exceeds 2s per 90°, however, the necessary torque and the kinetic energy are calculated with rotation time of 2s per 90°.

Selection Procedure	Remarks	Selection Example
Operating conditions		
Operating conditions are as follows: • Provisionally selected model • Operating pressure: MPa • Mounting position • Load type Static load: N·m Resistance load: N·m Inertial load: N·m • Load mass: kg • Rotation time: s • Rotation angle: rad	 See P. 380 for load type. The unit of the rotation angle is Radians. 180° = πrad 90° = π/2rad 	r = 25, 0.2 kg $0.4 kg$ $0.4 kg$ 100
Calculate the moment of inertia of the load. ⇒ P. 379	 If the moment of inertia of the load is made up of multiple components, calculate the moment of inertia of each component and add them together. 	$ \begin{array}{l} \mbox{Load 1 moment of inertia: } I_1 \\ I_1 = 0.4 \ x \ \frac{0.15^2 + 0.05^2}{12} + 0.4 \ x \ 0.05^2 = 0.001833 \\ \mbox{Load 2 moment of inertia: } I_2 \\ I_2 = 0.2 \ x \ \frac{0.025^2}{2} + 0.2 \ x \ 0.1^2 = 0.002063 \\ \mbox{Total moment of inertia: I} \\ I = I_1 + I_2 = 0.003896 \ [kg \cdot m^2] \end{array} $
Calculation of necessary tor	que	
Calculate necessary torque corresponding to the load type, and ensure it is within effective torque range. • Static load (Ts) Necessary torque T = Ts • Resistance load (Tf) Necessary torque T = Tf x (3 to 5) • Inertial load (Ta) Necessary torque T = Ta x 10 ⇒ P. 380	 When calculating the inertial load, if the rotation time exceeds 2s per 90°, inertial load is calculated with rotation time of 2s per 90°. Even for resistance load, when the load is rotated, necessary torque calculated from inertial load shall be added. Necessary torque T = Tf x (3 to 5) + Ta x 10 	Inertial load: Ta Ta = I · $\dot{\omega}$ $\dot{\omega} = \frac{2\theta}{t^2} [rad/s^2]$ Necessary torque: T T = Ta × 10 = 0.003896 x $\frac{2 \times \pi}{4^2}$ x 10 = 0.015 [N·m] (t is calculated with 2s per 90°.) 0.015 N·m < Effective torque OK
3 Checking rotation time		
Confirm that it is within the adjustable range of rotation time. ⇒ P. 381 Calculation of kinetic energy	• Converted to the time per 90° for comparison. (For comparison, 6s/180° is converted to 3s/90°.)	1.0 ≤ t ≤ 5 t = 3s/90° OK
Confirm that the load's kinetic energy is within the allowable value. Can be confirmed by the graph of the moment of inertia and the rotation time. ⇒ P. 381 Checking allowable load	 If the rotation time exceeds 2s per 90°, kinetic energy is calculated with rotation time of 2s per 90°. If the allowable value is exceeded, an external cushioning mechanism such as an absorber needs to be installed. 	$\begin{split} \mathbf{E} &= \frac{1}{2} \cdot \mathbf{I} \cdot \boldsymbol{\omega}^2 \\ \boldsymbol{\omega} &= \frac{2 \cdot \theta}{t} \\ \text{Kinetic energy} \\ &= \frac{1}{2} \times 0.003896 \times \left(\frac{2 \times \pi}{4}\right)^2 = 0.0048 \text{ [J]} \\ &\text{(t is calculated with 2s per 90°.)} \\ &0.0048 \text{ [J] < Allowable energy OK} \end{split}$
Check if the load applied to the	 If the allowable value is exceeded, an 	M = 0.4 x 9.8 x 0.05 + 0.2 x 9.8 x 0.1
product is within the allowable range. \Rightarrow P. 382	external bearing needs to be installed.	= 0.392 [N·m] 0.392 [N·m] < Allowable moment load OK
6 Calculation of air consumpti	on and necessary air quantity	

SMC

Calculate air consumption and necessary air quantity as required. \Rightarrow P. 383

Model Selection CRQ2X/MSQX Series

1. Thin shaft

Position of rotational axis: Perpendicular to the shaft through the center of gravity

2. Thin rectangular plate

Position of rotational axis: Parallel to side b through the center of gravity

3. Thin rectangular plate (Including rectangular parallelepiped) Position of rotational axis:

Perpendicular to the plate through the center of gravity

4. Round plate (Including column) Position of rotational axis:

Passing through the center axis

5. Solid sphere

Position of rotational axis: Passing through the diameter

6. Thin round plate Position of rotational axis: Passing through the diameter

7. Cylindrical

Position of rotational axis: Passing through the diameter and the center of gravity

8. When rotational axis and the center of the load are not concentric.

9. Gear transmission

CRQ2X/MSQX Series

Load Type

Calculation method of necessary torque depends on the load type. Refer to the table below.

	Load type						
Static load: Ts	Resistance load: Tf	Inertial load: Ta					
Only pressing force is necessary. (e.g. for clamping)	Weight or friction force is applied to rotating direction.	Rotate the load with inertia.					
L F	Gravity is applied.	Center of rotation and center of gravity of the load are concentric.					
Ts = F ⋅ L Ts: Static load (N ⋅ m) F : Clamping force (N) L : Distance from the rotation center to the clamping position (m)	Gravity is applied in rotating direction. Tf = m·g·L Friction force is applied in rotating direction. Tf = μ·m·g·L Tf : Resistance load (N·m) m : Load mass (kg) g : Gravitational acceleration 9.8 (m/s ⁶) L : Distance from the rotation center to the point of application of the weight or friction force (m) μ : Friction coefficient	$\label{eq:transform} \begin{array}{l} Ta = I \cdot \omega = I \cdot \frac{2\theta}{t^2} \\ Ta: Inertial load (N\cdotm) \\ I : Moment of inertia (Kg·m²) \\ \omega : Angular acceleration (rad/s²) \\ \theta : Rotation angle (rad) \\ t : Rotation time (s) \\ For low speed rotary, if the rotation time exceeds 2s per 90°, inertial load is calculated with rotation time of 2s per 90°. \end{array}$					
Necessary torque: T = Ts	Necessary torque: T = Tf x (3 to 5) Note)	Necessary torque: T = Ta x 10 Note)					
 Resistance load: Gravity or friction force is applied to rotating direction. Ex. 1) Rotation shaft is horizontal (lateral), and the rotation center and the center of gravity of the load are not concentric. Ex. 2) Load moves by sliding on the floor The total of resistance load and inertial load is the necessary torque. T = Tf x (3 to 5) + Ta x 10 Note To adjust the speed, margin is necessary for Tf and Ta. The total of resistance load: Neither weight or friction force is applied in rotating direction. Ex. 1) Rotation shaft is vertical (up and down). Ex. 2) Rotation shaft is vertical (lateral), and rotation center and the center of gravity of the load are not concentric. Necessary torque is inertial load only. T = Ta x 10 							

Model Selection CRQ2X/MSQX Series

Effective Torque

											Un	iit: N ∙ m		
Madal	Cizo				Op	perating) press	ure (MF	Pa)				CRQ2X	MSQX
woder	Size	0.1	0.15	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0		_10
	10	—	0.09	0.12	0.18	0.24	0.30	0.36	0.42	—	_	_		50 E
	15	—	0.22	0.30	0.45	0.60	0.75	0.90	1.04	—	-	-		
CRQ2)	20	0.37	0.55	0.73	1.10	1.47	1.84	2.20	2.57	2.93	3.29	3.66		-] 란 6
	30	0.62	0.94	1.25	1.87	2.49	3.11	3.74	4.37	4.99	5.60	6.24		
	40	1.06	1.59	2.11	3.18	4.24	5.30	6.36	7.43	8.48	9.54	10.6	20	20
	10	0.18	—	0.36	0.53	0.71	0.89	1.07	1.25	1.42	1.60	1.78	<u><u></u>² 15</u>	
MOON	20	0.37	—	0.73	1.10	1.47	1.84	2.20	2.57	2.93	3.29	3.66	0 10	
MSQX	30	0.55	—	1.09	1.64	2.18	2.73	3.19	3.82	4.37	4.91	5.45	0 0.2 0.4 0.6 0.8 1.0	0 0.2 0.4 0.6 0.8 1.0
	50	0.93	—	1.85	2.78	3.71	4.64	5.57	6.50	7.43	8.35	9.28	Operating pressure (MPa)	Operating pressure (MPa)

Note 1) Values of operating torque in the above table are representative values, and not guaranteed. Make use of the values as a reference when ordering. Note 2) Except for cases when an external stopper is used, the holding torque at the operation

end is half of the table value.

Kinetic Energy/Rotating Time

In a rotational movement, the kinetic energy of a load may damage the internal parts, even if the required torque for a load is small. Consider the moment of inertia and rotation time before selecting a model. (For model selection, refer to the moment of inertia and rotation time graph as shown on the below table.)

Allowable kinetic energy and rotation time adjustment range

Set the rotation time, within stable operational guidelines, using the adjustment range specification table as detailed below. When operating at low-speeds which exceed the rotation time adjustment range, use caution as it may result in sticking or malfunction.

Model	Size	Allowable kinetic energy (J)	Stable operational rotation time adjustment range (s/90°)		
	10	0.00025	0.745 5		
	15	0.00039	0.7 to 5		
CRQ2X	20	0.025			
	30	0.048			
	40	0.081			
	10	0.007	1 to 5		
MSQX	20	0.025			
	30	0.048			
	50	0.081			

Model Selection Select a model based on the moment of inertia and rotation time as shown graph below.

SMC

* If the rotation time exceeds 2 s per 90°, kinetic energy is calculated with rotation time of 2 s per 90°.

CRQ2X/MSQX Series

Allowable Load

CRQ2X

A load up to the allowable radial/thrust load can be applied provided that a dynamic load is not generated. However, applications which apply a load directly to the shaft should be avoided whenever possible. In order to further improve the operating conditions, a method such as that shown in the drawing on the right side is recommended so that a direct load is not applied to the shaft.

MSQX

Do not allow the load and moment applied to the table to exceed the allowable values shown in the table below.

(Operation beyond the allowable values can cause adverse effects on service life, such as play in the table and loss of accuracy.)

Size		(a) 1	(a) † (b)					
	Allowable radial load	Allowable th	Allowable moment					
	(N)	(a)	(b)	(N · m)				
10	78	74	78	2.4				
20	147	137	137	4.0				
30	196	197	363	5.3				
50	314	296	451	9.7				

Rotary Actuator Technical Data Air Consumption

[L (ANR)]

[L (ANR)]

[cm³]

[MPa]

[mm]

[mm²]

[L (ANR)]

Air consumption is the volume of air which is expended by the rotary actuator's reciprocal operation inside the actuator and in the piping between the actuator and the switching valve, etc. This is necessary for selection of a compressor and for calculation of its running cost.

* The air consumption (QCR) required for one reciprocation of the rotary actuator alone is shown in the table below, and can be used to simplify the calculation.

Formulas

$$\begin{aligned} Q_{CR} &= 2V \; x \left(\frac{P+0.1}{0.1} \right) x \; 10^3 \\ Q_{CP} &= 2 \; x \; a \; x \; L \; x \left(\frac{P}{0.1} \right) x \; 10^6 \\ Q_C &= Q_{CR} * Q_{CP} \end{aligned}$$

QCR = Air consumption of rotary actuator

QCP = Air consumption of tubing or piping

V = Internal volume of rotary actuator

a = Internal cross section of piping

Qc = Air consumption required for one reciprocation

P = Operating pressure

of rotary actuator

L = Length of piping

When selecting a compressor, it is necessary to choose one which has sufficient reserve for the total air consumption of pneumatic actuators downstream. This is affected by factors such as leakage in piping, consumption by drain valves and pilot valves, etc., and reduction of air volume due to drops in temperature.

Formulas

Qc2 = Qc x n x Number of actuators x Reserve factor

 \mathbf{Qc}_2 = Compressor discharge flow rate \mathbf{n} = Actuator reciprocations per minute **Reserve factor**: 1.5 or greater

Internal Cross Section of Tubing and Steel Piping

Nominal size	O.D. (mm)	I.D. (mm)	Internal cross section a (mm ²)		
T□0425	4	2.5	4.9		
T□0604	6	4	12.6		
TU 0805	8	5	19.6		
T□0806	8	6	28.3		
1/8B	—	6.5	33.2		
T□1075	10	7.5	44.2		
TU 1208	12	8	50.3		
T□1209	12	9	63.6		
1/4B	—	9.2	66.5		
TS1612	16	12	113		
3/8B	—	12.7	127		
T⊡1613	16	13	133		
1/2B	—	16.1	204		
3/4B	_	21.6	366		
1B	_	27.6	598		

Air Consumption

Air consumption: QCR L (ANR)

[L/min (ANR)]

Model	Size	Rotation angle	Internal volume	Operating pressure (MPa)										
		(°)	V (cm3)	0.1	0.15	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
	10	90	1.2	—	0.006	0.007	0.009	0.012	0.014	0.016	0.018	—	—	—
	10	180	2.2	—	0.011	0.013	0.018	0.022	0.026	0.031	0.035	—	—	—
	15	90	2.9	_	0.015	0.017	0.023	0.029	0.035	0.041	0.046	_	_	_
	15	180	5.5	_	0.028	0.033	0.044	0.055	0.066	0.077	0.088	_	—	—
CB02X 20	20	90	7.1	0.028	0.036	0.043	0.057	0.071	0.085	0.099	0.114	0.128	0.142	0.156
UNQZA	20	180	13.5	0.054	0.068	0.081	0.108	0.135	0.162	0.189	0.216	0.243	0.270	0.297
	20	90	12.1	0.048	0.060	0.073	0.097	0.121	0.145	0.169	0.193	0.218	0.242	0.266
	30	180	23.0	0.092	0.115	0.138	0.184	0.230	0.276	0.322	0.368	0.413	0.459	0.505
	40	90	20.6	0.082	0.103	0.123	0.164	0.206	0.247	0.288	0.329	0.370	0.411	0.452
	40	180	39.1	0.156	0.195	0.234	0.313	0.391	0.469	0.547	0.625	0.703	0.781	0.859
	10		6.6	0.026	0.033	0.040	0.053	0.066	0.079	0.092	0.106	0.119	0.132	0.145
MEON	20	100	13.5	0.054	0.068	0.081	0.108	0.135	0.162	0.189	0.216	0.243	0.270	0.297
WOUX	30	190	20.1	0.080	0.101	0.121	0.161	0.201	0.241	0.281	0.322	0.362	0.402	0.442
	50		34.1	0.136	0.171	0.205	0.273	0.341	0.409	0.477	0.546	0.614	0.682	0.750

Low-Speed Compact Rotary Actuator Rack & Pinion Type **CRQ2X Series** Size: 10, 15, 20, 30, 40

Applicable Auto Switches/Refer to pages 929 to 983 for detailed auto switch specification.

0		Flootical	to.	Marine -		Load volta	ge	Auto swit	tch model	Lead	wire le	ength ((m) *	Bro wirod			
Typ	Special function	entry	Indica: light	(Output)	I	DC AC		Perpendicular	In-line	0.5 (Nil)	1 (M)	3 (L)	5 (Z)	connector	Applical	ole load	
				3-wire (NPN)		5 V 10 V		M9NV	M9N	•	•	٠	0	0	IC		
tch	_			3-wire (PNP)		5 V, 12 V	'I [M9PV	M9P	•	•	۲	0	0	circuit		
swi				2-wire		12 V		M9BV	M9B		•	•	0	0			
f	0 Diagnostic indication			3-wire (NPN)		EV 10 V	, [M9NWV	M9NW	•	•	٠	0	0	IC	Deleu	
B Diag	(2-color indicator)	Grommet	Yes	3-wire (PNP)	24 V	J V, 12 V	-	M9PWV	M9PW	•	•	۲	0	0	circuit	PLC	
tati	(2-wire		12 V		M9BWV	M9BW	•	•	•	0	0	-	. 20	
sp	Weter resistant	1		3-wire (NPN) 3-wire (PNP)	5 V, 12 V	'	M9NAV*1	M9NA*1	0	0	۲	0	0	IC			
Sol	(2-color indicator)						M9PAV*1	M9PA*1	0	0	٠	0	0	circuit			
				2-wire		12 V	1	M9BAV*1	M9BA*1	0	0	۲	0	0	-		
ed switch		Grommet	Yes	Yes	3-wire (NPN equiv.)	_	5 V	-	A96V	A96	•	—	•	-	-	IC circuit	_
Ito S	_			O uning		10.1/	100 V	A93V*2	A93	•	•	۲	•	-	_	Relay,	
au			No	∠-wire	24 V	12 V	100 V or less	A90V	A90	•	-	۲	-	-	IC circuit	PLC	

*1 Although it is possible to mount water resistant type auto switches, note that the rotary actuator itself is not of water resistant construction.

*2 1 m type lead wire is only applicable to D-A93

* Lead wire length symbols: 0.5 m ····· Nil (Example) M9NW

1 m ····· M (Example) M9NWM

3 m ······ L (Example) M9NWL *

5 m ····· Z (Example) M9NWZ

* Auto switches marked with a "O" are produced upon receipt of orders.

* Refer to pages 970 and 971 for the details of solid

state auto switch with pre-wired connector.

* Auto switches are shipped together, (but not assembled).

Low-Speed Compact Rotary Actuator Rack & Pinion Type CRQ2X Series

Specifications

Size	10	15	20	30	40			
Fluid			Air (Non-lube)					
Max. operating pressure	0.7 N	1Pa		1 MPa				
Min. operating pressure	0.15 MPa 0.1 MPa							
Ambient and fluid temperature	0° to 60°C (No freezing)							
Cushion			Not attached					
Angle adjustment range		R	otation end \pm	5°				
Rotation angle	80° to 100°, 170° to 190°							
Port size	M5 x 0.8 Rc 1/8, G 1/8, NPT 1/8, NF							
Output (N ⋅ m)*	0.30	0.75	1.8	5.3				

* Output under the operating pressure at 0.5 MPa. Refer to page 381 for further information.

Symbol

Made to Order (Re	ide to Order fer to pages 394 to 408	for details.)				
Symbol	Specifications/Content	Applicable shaft type				
_	Shaft type variation	X,Y,Z,T,J,K				
XA1 to XA24	Shaft pattern sequencing I	S,W				
XA31 to XA59	Shaft pattern sequencing II	X,Y,Z,T,J,K				
XC7	Reversed shaft	S,W,X,T,J				
XC8 to XC11	Change of rotating range					
XC12 to XC15	Change of angle adjustable range (0° to 100°)"					
XC16, XC17	Change of angle adjustable range (90° to 190°)"	S,W,Y X*,Z*,T*,				
XC18, XC19	Change of rotating range	J [*] ,K [*]				
XC20, XC21	Change of angle adjustable					

 X60
 Shaft and parallel key made of stainless steel
 S,W,X,Y,Z, T,J,K

 * Among the symbols XC8 to XC21, only XC12 and

XC16 are compatible with shaft types X, Z, T, J and K.

Moisture Control Tube IDK Series

When operating an actuator with a small diameter and a short stroke at a high frequency, the dew condensation (water droplet) may occur inside the piping depending on the conditions.

Simply connecting the moisture control tube to the actuator will prevent dew condensation from occurring. For details, refer to the Web Catalog.

Allowable Kinetic Energy and Rotation Time Adjustment Range

Size	Allowable kinetic energy (J)	Stable operational rotation time adjustment range (s/90°)			
10	0.00025	0.7 to 5			
15	0.00039	0.7 to 5			
20	0.025				
30	0.048	1 to 5			
40	0.081				

Note) If operated where the kinetic energy exceeds the allowable value, this may cause damage to the internal parts and result in product failure. Please pay special attention to the kinetic energy levels when designing, adjusting and during operation to avoid exceeding the allowable limit.

Weight

		(g)						
Sizo	Standard weight*							
Size	90°	180°						
10	120	150						
15	220	270						
20	600	700						
30	900	1100						
40	1400	1600						
Size 10 15 20 30 40	90° 120 220 600 900 1400	180° 150 270 700 1100 1600						

* Not including the weight of auto switch.

CRQ2X Series

Rotation Range

When pressurized from the port indicated by the arrow, the shaft will rotate in a clockwise direction.

Rotation angle: 90°

Rotation angle: 180°

Standard

Size 20/30/40

Construction

Standard Size 10/15

Component Parts

No.	Descrip	tion	Material	
1	Body		Aluminum alloy	
2	Cover		Aluminum alloy	
3	Plate		Aluminum alloy	
4	End cover		Aluminum alloy	
5	Piston		Stainless steel	
	Size: 10, 15	Chaft	Stainless steel	
0	Size: 20, 30, 40	Snan	Chrome molybdenum steel	
7	Seal retainer		Aluminum alloy	
8	Bearing retainer		Aluminum alloy	
9	Wear ring		Resin	
10	Hexagon socket head of	ap screw	Stainless steel	
44	Size: 10, 15	Hexagon nut	Cteal wire	
	Size: 20, 30, 40	t Sieel Wire		

Component Parts

AL.	-		N e ce	Markanial
INO.		Descrip	tion	Iviateriai
12	Cross recessed	screw	No. 0	Steel wire
10	Size: 10, 15	Cross r	ecessed screw No. 0	Charle wine
13	Size: 20, 30, 40	Cross	recessed screw	Steel wire
14	Hexagon socket	head s	et screw	Chrome molybdenum steel
15	Bearing			Bearing steel
16	Size: 20, 30, 40 d	only	Parallel key	Carbon steel
17	Size: 20, 30, 40 d	only	Steel ball	Stainless steel
18	Type CS retainin	ng ring		Stainless steel
19	Seal			NBR
20	Gasket			NBR
21	Piston seal		NBR	
22	Seal washer		NBR	
23	With auto switcl	n only	Magnet	—

Replacement Parts

Description			Part no.			Noto
Description	10	15	20	30	40	Note
Seal kit	P473010-23	P473020-23	P473030-23	P473040-23	P473050-23	A set of above numbers (9), (19, 20, 21) and (2)

Parts included in Seal Kit

No.	Description	Qty.	Note
9	Wear ring	4	
19	Seal	1	
	Gasket for cover	2	Cize 10 15
20	Gasket for end cover	1	3128. 10, 15
	Gasket	4	Size: 20, 30, 40
21	Piston seal	4	
22	Seal washer	2	

* A set includes all parts above.

A grease pack (10 g) is included. When only a grease pack is needed, order with the following part number. Replacement parts/Grease pack part no: P523010-21 (10 g)

CRQ2X Series

Construction

With auto switch Size 10/15

With auto switch Size 20/30/40

Low-Speed Compact Rotary Actuator Rack & Pinion Type CRQ2X Series

Dimensions

With double shaft

													(mm)
Size	Rotation angle	A	AU*	в	ва	вв	вс	BF	BG	BU	D (g6)	DD (h9)	н
10	90°, 180°	42.4	(8.5)	29	8.7	17.2	6.7	2.2	8.2	16.7	5	12	18
15	90°, 180°	53.6	(9.5)	31	9.2	26.4	10.6	—	9	23.1	6	14	20

Size	Rotation angle	W	Q	S	US	UW	Ν	М	TA	TC	TD
10	90°	4 5	17	56.4	25	44	6	0	15.5	0	15.4
10	180°	4.5		68.9	- 35	44	0	9		l °	
15	90°		20	65.2	40	50	7	10	16	0	17.0
15	180°	5.5	20	82.2	40	50				9	17.6

* The AU dimension is not the dimension at the time of shipment, since its dimension is for adjustment parts.

S: Upper 90°, Lower 180°

CRQ2X Series

Dimensions

With double shaft

ŝ

																			(mm)
Size	Rotation angle	Α	AU*	в	ва	вв	вс	BD	BE	BU	D (g6)	DD (h9)	F	н	H J JA JB J		JJ	к	
20	90°, 180°	63	(11)	50	14	34	14.5	-		30.4	10	25	2.5	30	M8 x 1.25	11	6.5	-	3
30	90°, 180°	69	(11)	68	14	39	16.5	49	16	34.7	12	30	3	32	M10 x 1.5	14	8.5	M5 x 0.8 depth 6	4
40	90°, 180°	78	(13)	76	16	47	18.5	55	16	40.4	15	32	3	36	M10 x 1.5	14	8.6	M6 x 1 depth 7	5

Cizo	Rotation o s		W	Key dimensions				та тв		тр	TF	TG	т	1134	<u> </u>		N		
Size	angle	Q	3	vv	b	L1	05	IA				(H9)	(H9)		00	G		N	L .
20	90°	20	104.4	11.5	10	20	50	04 E	1	10.5	07	4		25	74	0.0	15	11	0.6.0
20	180°	23	129.5	11.5	5 4 _{-0.03}	20	33	24.5	'	13.5	21	4	4	2.5	14	0-0.1	15		3.0 -0.1
20	90°	22	122	10 5	A 0	20	6E	07	2	10	26	4	4	25	0.2	10.0	10	12	11 4 0
30	180°	- 33	153	13.5	5.5 4 _{-0.03}	20	05	03 27	-	19	30	4	4	2.5	83	10-0.1	18	13	11.4-0.1
40	90°	07	139.3	17	17 5-0.03	05	70	00 F	_	20) 39.5	5	5	0.5			- 00	15	44 0
40	180°	37	177	17		25	73	73 32.5	2					3.5	93	11-0.1	20	15	14 -0.1

* The AU dimension is not the dimension at the time of shipment, since its dimension is for adjustment parts. ** In addition to Rc 1/8, G 1/8, NPT 1/8 and NPTF 1/8 are also available. S: Upper 90°, Lower 180°

390

Low-Speed Compact Rotary Actuator Rack & Pinion Type CRQ2X Series

Unit Used as Flange Mount

The L dimensions of this unit are shown in the below table. When hexagon socket head cap bolt of the JIS standard is used, the head of the bolt will recess into the groove of actuator.

Size	L	Screw
10	13	M4
15	16	M4
20	22.5	M6
30	24.5	M8
40	28.5	M8

Auto Switch Proper Mounting Position (at Rotation End Detection)

		S	olid stat	e switc	h		Reed s	witch		
Size	Rotation angle	A B Op ang		Operating angle (θ m)	Hystere- sis angle	A	в	Operating angle (θ m)	Hystere- sis angle	
10	90°	19	25.5	610	5°	15	21.5	630	120	
10	180°	22	35		5	18	31	05	12	
15	90°	22.5	31	170	10	18.5	27	52°	۵°	
15	180°	26.5	43.5	4/	-	22.5	39.5	52		
20	90°	40	52.5	400	10	36	48.5	110	۵°	
20	180°	46	71.5	40	4	42	67.5	41	9	
30	90°	47	63	200	2 0	43	59	300	70	
50	180°	55	86	20	2	51	82	52	1.	
40	90°	54	73	240	20	50	69	240	50	
40	180°	63.5	101.5	24	2	59.5	97.5	24	5.	

Operating angle θ m: Value of the operating range of single auto switch (Lm) as represented by rotation angle for shaft

Hysteresis angle: Value of the auto switch hysteresis as represented by angle

Note) Since the above values are only provided as a guideline, they are not guaranteed. In the actual setting, adjust them after confirming the auto switch operating condition.

CRQ2X Series

1 Shaft Type Variation, Four Chamfers (Size 20/30/40) (Dimension parts different from the standard conform to the general tolerance.) Shaft Type: X, Z

Specifications

Fluid	Air (Non-lube)
Applicable shaft type	Single w/ four chamfers (X), Double w/ four chamfers (Z)
Applicable size	20, 30, 40
Max. operating pressure	1.0 MPa
Min. operating pressure	0.1 MPa
Cushion	Not attached
Rotation	80° to 100°, 170° to 190°
Port size	Rc 1/8, G 1/8, NPT 1/8, NPTF 1/8
Auto switch	Mountable

Dimensions

2 Shaft Type Variation, Double Shaft With Key (Size 20/30/40) (Dimension parts different from the standard conform to the general tolerance.) Shaft Type: Y

Specifications

Fluid	Air (Non-lube)
Applicable shaft type	Double shaft with key (Y)
Applicable size	20, 30, 40
Max. operating pressure	1.0 MPa
Min. operating pressure	0.1 MPa
Cushion	Not attached
Rotating angle	80° to 100°, 170° to 190°
Port size	Rc 1/8, G 1/8, NPT 1/8, NPTF 1/8
Auto switch	Mountable

Y

				(11111)
Size	D (g6)	W	н	UY
20	10	11.5	30	89
30	12	13.5	32	97
40	15	17	36	109

3 Shaft Type Variation/Without Keyway (Dimension parts different from the standard conform to the general tolerance.) Shaft Type: T, J, K

CRQ2XB CDRQ2XB Sha	aft ty	vpe Size — Rotating angle
	• Sh	• Refer to "How to Order" on page 384 for further information.
[т	Single round shaft
	J	Double (Without long shaft key, with four chamfers on short shaft one chamfer on short shaft for 10 and 15.
[к	Double round shaft

Specifications

Fluid	Air (N	on-lube)						
Applicable shaft type	Single round shaft (T), Double s	shaft (J), Double round shaft (K)						
Applicable size	10, 15	20, 30, 40						
Max. operating pressure	0.7 MPa	1.0 MPa						
Min. operating pressure	0.15 MPa 0.1 MPa							
Cushion	Not at	tached						
Rotating angle	80° to 100°,	170° to 190°						
Port size	M5 x 0.8 Rc 1/8, G 1/8, NPT 1/8, NPTF 1/8							
Auto switch	Mountable							

Dimensions

CRQ2X Series (Size: 10, 15, 20, 30, 40) Simple Specials: -XA1 to -XA24: Shaft Pattern Sequencing I

Symbol

-XA1 to XA24

Shaft shape pattern is dealt with through the Simple Specials System. Please contact your local sales representative for more details.

Shaft Pattern Sequencing I

Applicable shaft type: S. W

Combination Chart of Simple Specials for Tip End Shape

Chart 1. Combination between -XA and -XA (S. W shaft)

Symbol	Description	Тор	port	Shaf	t type	Applicable										Com	hina	tion									
Symbol	Description	Upper	Lower	S	w	size										COIII	Dina	lion									
XA 1	Female thread at the end	۲	-	•	۲	10, 15	XA 1					* D)escr	ribes	the	com	oinati	on a	vaila	ble f	or co	rrest	oond	ina s	haft :	shar	es.
XA 2	Female thread at the end	—	•	•	•	20, 30, 40	٠	XA 2				-															
XA 3	Tip end of male thread	۲	-	•	•		-	٠	XA 3																		
XA 4	Tip end of male thread	_	•	—	۲		W *	_	W *	XA 4																	
XA 5	Stepped round shaft	۲	-	•	۲		—	•		•	XA 5																
XA 6	Stepped round shaft	_		—			W *	—	W *	—	W *	XA 6															
XA 7	Round shaft with steps and male thread	۲	-	•		10 15	—	•	-	•	—	٠	XA 7														
XA 8	Round shaft with steps and male thread	_		—		10, 13	W *	—	W *	—	W *	—	W *	XA 8													
XA 9	Change of the length of standard chamfered face	۲	-	•			—	•	-	•	—	٠	—	•	XA 9												
XA10	Change of the length of standard chamfered face	—		—			W *	—	W *	—	W *	—	W *	—	W *	XA10											
XA11	Two-sided chamfer	۲	-	•			—	•	-	•	—	٠	—	•	—	•	XA11										
XA12	Two-sided chamfer	—	•	—	•		W *	—	W *	-	W *	_	W *	—	W *	-	W *	XA12									
XA13	Shaft through-hole	۲	•	•	•			_	—	-	—	_	-	-	•	•	-	—	XA13								
XA14	Shaft through-hole and female thread	۲	-	•	•	10.15	-	_	—	-	—	_	-	-	•	•	-	—	-	XA14							
XA15	Shaft through-hole and female thread	—	•	•	•	20, 30, 40	-	_	—	-	—	_	-	-	•	•	-	—	-	—	XA15						
XA16	Shaft through-hole and female thread	۲	•	•	•		-	_	—	-	—	_	-	-	-	-	-	—	-	—	-	XA16					
XA17	Shortened shaft	۲	-	•	•	10, 15	Ι	•	—	•	—	•	-	•	-	•	-	•	•	—	•	-	XA17				
XA18	Shortened shaft	—	•	-	•	10, 15, 20, 30, 40	W *	_	W *	-	W *	_	W *	-	W *	-	W *	—	W *	W *	-	-	W *	XA18			
XA19	Shortened shaft	۲	•	-	•	10, 15	Ι	_	—	-	—	_	-	-	-	-	-	—	W *	—	-	-		-			
XA20	Reversed shaft	۲	•	•	•	10, 15, 20, 30, 40	Ι	_	—	-	-	_	-	-	-	-	-	—	•	—	-	-		-	XA20		
XA21	Stepped round shaft with double-sided chamfer	۲	-	•	•		Ι	•	—	•	-	•	-	•	-	•	-	•	-	—	-	-		•	•	XA21	1
XA22	Stepped round shaft with double-sided chamfer	—	•	-	•	10, 15	W *	_	W *	-	W *	_	W *	-	W *	-	W *	—	-	—	-	-	W *	-	-	W *	XA22
XA23	Right-angle chamfer	۲	-	•	۲		•	•	—	•	—	•	-	•	-	•	—	•	•	٠	•	•	—	•	•	_	•
XA24	Double key	۲	-		۲	20, 30, 40		۲	—	—	—	—	—	—	—	—	—	—	•				—	•	•	—	—

Combination Chart of Made to Order

Chart 2. Combination between -XA and -XC (Made to Order/ Details of -XC , refer to page 404.)

Sumbol	Description	Applicable	Combination	Sumbol	Description	Applicable	Combination					
Symbol	Description	size	XA1 to XA24	Symbol	Description	size	XA1 to XA24					
XC 7	Reversed shaft		-	XC18	Channes of antation and a		•					
XC 8			•	XC19	Change of rotating range	20 30 40	•					
XC 9	Change of retating range		•	XC20	XC20 Change in angle adjustable	20,00,40	•					
XC10	Change of rotating range		•	XC21	range 90° to 190°		•					
XC11		10.15	•									
XC12		20, 30, 40	•									
XC13	Change in angle adjustable		•									
XC14	range 0° to 100°		•									
XC15			ě									
XC16	Change in angle adjustable		•									
XC17	range 90° to 190°		•] * Cr	hart 5. Hefer to page 404 for co	mbination availab	ble between -XC⊔	and -XC				
394				-	01.10							
004					SVC							

Simple Specials CRQ2X Series

Shaft Pattern Sequencing I

Symbol -XA1 to XA8

Additional Reminders

- 1. Enter the dimensions within a range that allows for additional machining.
- 2. Unless indicated otherwise, the dimensional tolerance conforms to the general tolerance. SMC will make appropriate arrangements.
- 3. The length of the unthreaded portion is 2 to 3 pitches.
- 4. Unless specified otherwise, the thread pitch is based on coarse metric threads. M3 x 0.5, M4 x 0.7, M5 x 0.8 M6 x 1
- 5. Enter the desired figures in the [___] portion of the diagram.
- 6. XA1 to XA24 are the standard products that have been additionally machined.
- 7. Chamfer face of the parts machining additionally is C0.5.

Symbol: A3

The long shaft can be further shortened by machining male threads into it.

(If shortening the shaft is not required, indicate "+" for dimension X.)

Applicable shaft types: S, W

Symbol: A6

The short shaft can be further shortened by machining it into a stepped round shaft.

(If shortening the shaft is not required, indicate "*" for dimension Y.)

(If not specifying dimension C2, indicate "*" instead.) · Applicable shaft type: W

· Equal dimensions are indicated by the same marker

Machine female threads into the long shaft. The maximum dimension L1 is, as a rule, twice the thread size (Example) For M3: L1 = 6 · Applicable shaft types: S, W

Symbol: A2

40

Symbol: A5

Symbol: A4

The short shaft can be further shortened by machining male threads into it.

(If shortening the shaft is not required, indicate "*" for dimension Y.)

Applicable shaft type: W

Symbol: A7

The long shaft can be further shortened by machining it into a stepped round shaft with male threads. (If shortening the shaft is not required, indicate "*" for dimension X.)

(If not specifying dimension C1, indicate "*" instead.) · Applicable shaft types: S, W

The long shaft can be further shortened by machining it into a stepped round shaft. (If shortening the shaft is not required, indicate "*" for dimension X.)

M4, M5, M6

(If not specifying dimension C1, indicate "*" instead.) · Applicable shaft types: S, W

Equal dimensions are indicated by the same marker.

Symbol: A8

The short shaft can be further shortened by machining it into a stepped round shaft with male threads (If shortening the shaft is not required, indicate "*" for dimension Y.)

(If not specifying dimension C2, indicate "*" instead.)

· Applicable shaft type: W

CRQ2X

Shaft Pattern Sequencing I

Symbol -XA9 to XA16

Additional Reminders

- Enter the dimensions within a range that allows for additional machining.
- Unless indicated otherwise, the dimensional tolerance conforms to the general tolerance. SMC will make appropriate arrangements.
- The length of the unthreaded portion is 2 to 3 pitches.
- 4. Unless specified otherwise, the thread pitch is based on coarse metric threads. M3 x 0.5, M4 x 0.7, M5 x 0.8
 - M6 x 1
- 5. Enter the desired figures in the ____ portion of the diagram.
- XA9 to XA24 are the standard products that have been additionally machined.
- Chamfer face of the parts machining additionally is C0.5.

Symbol: A11

- The long shaft can be further shortened by machining
- a double-sided chamfer on to it. • Since L1 is a standard chamfer, dimension E1 is 0.5
- or more. (If altering the standard chamfer and shortening the shaft are
- (If altering the standard chamfer and shortening the shaft are not required, indicate "*" for both the L1 and X dimensions.)
 Applicable shaft types: S, W,

Symbol: A14

A special end is machined onto the long shaft, and a through-hole is drilled into it. Female threads are machined into the through-hole, whose diameter is equivalent to the pilot hole diameter.

 The maximum dimension L1 is, as a rule, twice the thread size.

Symbol: A9

The long shaft can be further shortened by changing the length of the standard chamfer on the long shaft side. (If shortening the shaft is not required, indicate "*" for dimension X λ

Applicable shaft types: S, W

Symbol: A12

- The short shaft can be further shortened by machining a double-sided chamfer on to it.
- Since L2 is a standard chamfer, dimension E2 is 0.5 or more.

(If altering the standard chamfer and shortening the shaft are not required, indicate "*" for both the L2 and Y dimensions.) • Applicable shaft type: W

Symbol: A15

M6 x 1

A special end is machined onto the short shaft, and a through-hole is drilled into it. Female threads are machined into the through-hole, whose diameter is equivalent to the pilot hole diameter.

- equivalent to the pilot hole diameter.
 The maximum dimension L2 is, as a rule, twice the
- the maximum dimension L2 is, as a rule, twice thread size. (Example) For M4: L2 = 8
- Applicable shaft types; S, W

Symbol: A10

The short shaft can be further shortened by changing the length of the standard chamfer. (If shortening the shaft is not required, indicate "*" for dimension Y.)

Applicable shaft type: W

Symbol: A13

Shaft with through-hole Minimum machining diameter for d1 is 0.1. • Applicable shaft types: S, W

Symbol: A16

40

ø3 to ø5.5

ø4 to ø7

A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

The maximum dimension L1 is, as a rule, twice the thread size. (Example) For M5: L1 = 10

Simple Specials CRQ2X Series

Symbol

-XA17 to XA24

Shaft Pattern Sequencing I

CRQ2X Series (Size: 10, 15, 20, 30, 40) Simple Specials: -XA31 to -XA59: Shaft Pattern Sequencing II Shaft shape pattern is dealt with through the Simple Specials System.

Symbol

-XA31 to XA59

Shaft shape pattern is dealt with through the Simple Specials System Please contact your local sales representative for more details.

Shaft Pattern Sequencing II

Applicable shaft type: X, Y, Z, T, J and K

Shaft Pattern Sequencing II

Symbol -XA31 to XA59

Combination Chart of Simple Specials for Tip End Shape

Chart 3. Combination between -XA and -XA (X, Y, Z, T, J, K shafts)

Sumbol	Decoription	Тор	port			Shaf	type			Applicable					Comb	vinatio	n					_	
Symbol	Description	Upper	Lower	J	к	т	Х	Y	Z	size					COM	manc	ori						
XA31	Female thread at the end	•	Ι	-	-	-	-	٠	-	00 00 40	XA31						* C	orresi	oondir	na sh	afts tv	/pe	
XA32	Female thread at the end	—	•			-	-	٠	—	20, 30, 40	Y *	XA32]				a	ailab	le for	comb	oinatio	n	
XA33	Female thread at the end	٠	—	•	•	٠	—	—	—	10, 15,	—	—	XA33										
XA34	Female thread at the end		•	—	•	•	•	-	-	20, 30, 40	—	—	K, T *	XA34									
XA35	Female thread at the end	٠	-			-	٠	—	٠	20 20 40	-	—	-	Χ*	XA35]							
XA36	Female thread at the end	—	•	•	—	—	—	—	٠	20, 30, 40	_	—	J*	—	Ζ*	XA36							
XA37	Stepped round shaft	•	Ι	•	•	•	-	-	-	10, 15,	-	—		KT *	_	J*	XA37						
XA38	Stepped round shaft	—	٠	—	٠	—	—	—	—	20, 30, 40	_	—	K*	—	—	-	Κ*						
XA39	Shaft through hole	٠	•	—	—	—	—	٠	—	20, 30, 40	—	—	-	—	_	-	-						
XA40	Shaft through hole	•	•	—	•	•	-	-	-	10, 15,	-	—	Ι	-	_	-	-						
XA41	Shaft through hole	٠	•	•		-	٠	—	٠	20, 30, 40	—	—	-		-	-							
XA42	Shaft through hole and female thread	٠	•	—	—	—	—	٠	—	20, 30, 40	-	—	-	—	_	-	_						
XA43	Shaft through hole and female thread	•	•	—	•	•	-	-	-		-	—		-	_	-							
XA44	Shaft through hole and female thread	٠	•	•		-	٠	-	٠	10, 15,	—	—	-		-	-		XA38					
XA45	Middle-cut chamfer	٠	—	•	•	٠	—	—	—	20, 30, 40	-	-	-	Κ*	—	J *	-	Κ*	XA39	XA40	XA41	XA45	
XA46	Middle-cut chamfer		•	-	•	-	-	-	-		—	—	K*	-	-	-	Κ*	Ι	Ι	_	-	Κ*	XA46
XA48	Change of long shaft length	٠	-			-	-	٠	-		-	Y *	Y *		-	-			Y *		-		-
XA49	Change of short shaft length	—	•	—	—	—	—	٠	—	20, 30, 40	Y *	—	-	—	_	-	_	-	Y *	_	—	_	-
XA50	Change of double shaft length	•	•	-	-	-	-	•	_		—	—		-		-		I	Υ*	_	—	_	-
XA51	Change of long shaft length	•	—	•	•	•	—	—	—	10 15	_	—	-	K, T *		J *	١	Κ*	-	K, T *	—	—	Κ*
XA52	Change of short shaft length	—	•	-	•	—	—	—	—	10, 10,	-	-	K *	-	—	-	Κ*	—	-	Κ*	-	K, T *	-
XA53	Change of double shaft length	•	•	-	•	-	-	-	_	20, 30, 40	—	—		-		-		Ι	Ι	Κ*	—	_	-
XA54	Change of long shaft length	•	—		I		٠	—	٠		_	—	-	Χ*		Z *	١	—	-		X, Z *	—	-
XA55	Change of short shaft length	—	•	•	-	—	—	—	٠	20, 30, 40	-	—	J*	—	Ζ*	-	J *	—	-	—	J, Z *	—	J*
XA56	Change of double shaft length	٠	•	_	_	_	_	_	٠		-	-	-	-	_	-	-	—	-	_	Ζ*		
XA57	Change of double shaft length	•	•	•	-	_	_	_	_	10, 15,		_	-	_	_	_	-	—	-	_	J*	—	
XA58	Reversed shaft, Change of double shaft length	٠	•	•	—	•	—	_	_	20, 30, 40	-	-	-	-		-	_	_	-	Τ*	J*	-	-
XA59	Reversed shaft, Change of double shaft length	٠	•	—	—	—	٠	—	—	20, 30, 40	_	—	-	—	—	-	—	—	—	—	Χ*	_	—

Combination Chart of Made to Order

Chart 4. Combination between -XA and -XC (Made to Order/Details of -XC , refer to page 404.)

Cumhal	Description	Applicable size	Combination
Symbol	Description	Applicable size	XA31 to XA59
XC 7	Reversed shaft		-
XC 8			•
XC 9	Change of rotating range		•
XC10	Change of fotalling farige		•
XC11		10.15	•
XC12		10, 15,	•
XC13	Change in angle adjustable range 0% to 100%	20, 30, 40	•
XC14	Change in angle adjustable range 0° to 100°		•
XC15			•
XC16	Change in angle adjustable range 90% to 190%		•
XC17	Change in angle adjustable range 50 to 190		•
XC18	Change of votating vange		•
XC19	Change of rotating fallge	20 30 40	•
XC20	Change in angle adjustable range 80% to 100%	20, 30, 40	•
XC21	Change in angle adjustable range 90 to 190		•

 \ast Chart 5. Refer to page 404 for combination available between -XC \square and -XC \square .

CRQ2X Series

Shaft Pattern Sequencing II

Symbol -XA31 to XA38

Additional Reminders

- 1. Enter the dimensions within a range that allows for additional machining.
- 2. Unless indicated otherwise, the dimensional tolerance conforms to the general tolerance. SMC will make appropriate arrangements.
- 3. The length of the unthreaded portion is 2 to 3 pitches.
- 4. Unless specified otherwise, the thread pitch is based on coarse metric threads. M3 x 0.5, M4 x 0.7, M5 x 0.8
 - M6 x 1
- 5. Enter the desired figures in the [___] portion of the diagram.
- 6. XA31 to XA59 are the standard products that have been additionally machined.
- 7. Chamfer face of the parts machining additionally is C0.5.

Symbol: A33

Machine female threads into the long shaft. The maximum dimension L1 is, as a rule. twice the thread size. (Example) For M3: L1 = 6 · Applicable shaft types: J, K, T Q1 = M á (3 × + I 5 (mm) Q1 Size M3 10 15 M3, M4 M3, M4, M5, M6 20 M4, M5, M6, M8 M4, M5, M6, M8, M10 30 40

Symbol: A36

- Machine female threads into the short shaft. . The maximum dimension L2 is, as a rule,
- twice the thread size
- (Example) For M4: L2 = 8
- · Applicable shaft types: J, Z

Symbol: A31

- Machine female threads into the long shaft . The maximum dimension L1 is, as a rule, twice the thread size
- (Example) For M3: L1 = 6 Applicable shaft type: Y

Symbol: A34

Machine female threads into the short shaft. The maximum dimension L2 is, as a rule. twice the thread size. (Example) For M5: L2 = 10 Applicable shaft types; K. T. X

Symbol: A37

- The long shaft can be further shortened by machining tinto a stepped round shaft (if shortening the shaft is not required, indicate "*" for dimension X.) (If not specifying dimension C1, indicate "*" instead.) Applicable shaft types: J, K, T
- · Equal dimensions are indicated by the same marker

Symbol: A35

- Machine female threads into the long shaft. The maximum dimension I 1 is as a rule. twice the thread size.
- (Example) For M3: L1 = 6 Applicable shaft types; X, Z

Symbol: A38

The short shaft can be further shortened by machining (If shortening the shaft is not required, indicate "*" for

- dimension Y.) (If not specifying dimension C2, indicate "*" instead.)
- Applicable shaft type: K
 Equal dimensions are indicated by the same marker.

Simple Specials CRQ2X Series

Shaft Pattern Sequencing II

Symbol -XA39 to XA48

CRQ2X Series

Shaft Pattern Sequencing II

Symbol -XA49 to XA57

Simple Specials CRQ2X Series

Shaft Pattern Sequencing II

Symbol -XA58 to XA59

CRQ2X Series Made to Order Specifications 1

Made to Order

Please contact SMC for detailed dimensions, specifications and lead times.

Combination Chart of Made to Order

Chart 5. Combination between -XC□ and -XC□

Symbol	Description	Applicable size	Combination								
XC7	Reversed shaft		XC 7								
XC8											
to	Change of rotating range	nge of rotating range									
XC11											
XC12		10, 15,									
to	Change in angle adjustable range 0° to 100°	20, 30, 40	•								
XC15											
XC16	Change in angle adjustable range 90° to 190°										
XC17	Change in angle adjustable range 50 to 150		•								
XC18	Change of rotating range		•								
XC19	Change of rotating fallge	00 00 40	-								
XC20	Change in angle adjustable range 90° to 190°	20, 30, 40	•								
XC21	change in angle adjustable fange 50 to 150		-								

Made to Order Specifications CRQ2X Series

		()
Size	м	н
10	10	17 (—)*
15	11	19 (—)*
20	16.5	28.5 (19.5)*
30	20	30 (22)*
40	22	34 (25)*

* For X shaft

CRQ2X Series Made to Order Specifications 2

Please contact SMC for detailed dimensions, specifications and lead times.

Made to Order Specifications CRQ2X Series

Symbol -XC12 to XC17, XC20/XC21

CRQ2X Series Made to Order Specifications 3 Please contact SMC for detailed dimensions, specifications and lead times.

Symbol 4 Shaft, Parallel Key Made of Stainless Steel Spec. -X6

Shaft, parallel key made of stainless steel

Stainless steel is used as a substitute material for standard parts when used under conditions with a possibility of oxidization or decay.

Fluid	Air (Non-lube)
Applicable shaft type	S, W, X, Y, Z, T, J, K
Applicable size	20, 30, 40
Max. operating pressure	1.0 MPa
Min. operating pressure	0.1 MPa
Cushion	Not attached
Rotation range	80° to 100°, 170° to 190°
Stainless steel part	Shaft, Parallel key
Port size	Rc 1/8, G 1/8, NPT 1/8, NPTF 1/8
Auto switch	Mountable

Low-Speed Rotary Table **Rack & Pinion Type MSQX** Series Size: 10, 20, 30, 50

Applicable Auto Switches/Refer to pages 929 to 983 for detailed auto switch specification.

				1 0												
0		Electrical	or	Minima		Load volta	ge	Auto swit	ch model	Lead	wire le	ength ((m) *	Due wined		
Typ	Special function	entry	Indicat	(Output)	DC		AC	Perpendicular In-line		0.5 (Nil)	1 (M)	3 (L)	5 (Z)	connector	Applicat	ole load
				3-wire (NPN)		EV 10 V		M9NV	M9N	•	•	•	0	0	IC	
tc	_			3-wire (PNP)]	5 V, 12 V		M9PV	M9P	•	•	•	0	0	circuit	
swi				2-wire		12 V	1	M9BV	M9B	•	٠	•	0	0	—	
tate auto	Diagnostic indiaction]		3-wire (NPN)		EV 10 V]	M9NWV	M9NW	•	•	•	0	0	IC	Dalau
	(2-color indicator)	Grommet	Yes	3-wire (PNP)	24 V	5 V, 12 V	-	M9PWV	M9PW	•	•	•	0	0	circuit	PLC
				2-wire		12 V	1	M9BWV	M9BW	•	٠	•	0	0	—	120
ġ				3-wire (NPN)		EV 10.V		M9NAV*1	M9NA*1	0	0	•	0	0	IC	
Sol	Water resistant			3-wire (PNP)		5 V, 12 V		M9PAV*1	M9PA*1	0	0	•	0	0	circuit	
				2-wire		12 V	1	M9BAV*1	M9BA*1	0	0	•	0	0	—	
Reed auto switch		0	Yes	3-wire (NPN equiv.)	Ι	5 V	-	A96V	A96	•	-	•	-	-	IC circuit	_
		Grommet	0.01	10.1/	100 V	A93V*2	A93	•	٠	•	•	-	—	Relay,		
			No	2-wire 24 V	24 V	12 V	1 12 V	100 V or less	Δ90V	Δ9 0		_		_		IC circuit

*1 Although it is possible to mount water resistant type auto switches, note that the rotary actuator itself is not of water resistant construction.

*2 1 m type lead wire is only applicable to D-A93.

* Lead wire length symbols: 0.5 m Nil (Example) M9NW

1 m M (Example) M9NWM

3 m ······ L (Example) M9NWL 5 m ······ Z (Example) M9NWZ

* Auto switches marked with a "O" are produced upon receipt of orders.

* Refer to pages 970 and 971 for the details of solid state auto switch with pre-wired connector

* Auto switches are shipped together, (but not assembled).

MSQX Series

Specifications

Size	Э	10	20	30	50							
Fluid		Air (Non-lube)										
Max. operating	pressure	1 MPa										
Min. operating	pressure	0.1 MPa										
Ambient and flui	d temperature		0° to 60°C (No freezing)								
Cushion		Not attached										
Angle adjustme	ent range		0 to	190°								
Maximum rotat	ion angle		19	90°								
Dout oline	End port	M5 x 0.8 Rc 1/8, G 1/8, NPT 1/8, NPTF 1/8										
FUILSIZE	Side port	M5 x 0.8										
Output (N·m)*		0.89 1.8 2.7 4										

* Output under the operating pressure at 0.5 MPa. Refer to page 381 for further information.

Front port Side port

Allowable Kinetic Energy and Rotation Time Adjustment Range

Size	Allowable kinetic energy (J)	Stable operational rotation time adjustment range (s/90°)
10	0.007	
20	0.025	1 10 5
30	0.048	1 10 5
50	0.081	

Note) If operated where the kinetic energy exceeds the allowable value, this may cause damage to the internal parts and result in product failure. Please pay special attention to the kinetic energy levels when designing, adjusting and during operation to avoid exceeding the allowable limit.

Weight

				(g)
Size	10	20	30	50
Basic	500	940	1230	1990

* Not including the weight of auto switch.

Symbol

Made to Order	Made to Order Refer to page 416 for details.
Symbol	Specifications/Content
-X15□	With external stopper

Low-Speed Rotary Table Rack & Pinion Type **MSQX** Series

Rotation Direction and Rotation Angle

The rotary table turns in the clockwise direction when the A port is pressurized, and in the counter-clockwise direction when the B port is pressurized.
By adjusting the adjustment bolt, the rotation end can be set within the range shown in the drawing for the desired rotation angle.

Rotation Angle Range Example

 Various rotation ranges are possible as shown in the drawings below using adjustment bolts A and B. (The drawings also show the rotation ranges of the positioning pin hole.)

SMC

MSQX Series

Table Displacement (Reference values)

• The following graphs show the displacement at point A, which is 100 mm apart from the center of rotation, where the load is applied.

MSQXB30A

MSQXB50A

SMC

Construction

Component Parts

No.	Description	Material
1	Body	Aluminum alloy
2	Cover	Aluminum alloy
3	Plate	Aluminum alloy
4	Seal	NBR
5	End cover	Aluminum alloy
6	Piston	Stainless steel
7	Pinion	Chrome molybdenum steel
8	Hexagon small nut	Steel wire
9	Adjustment bolt	Chrome molybdenum steel
10	Gasket	NBR
11	Gasket	NBR
12	Table	Aluminum alloy
13	Bearing retainer	Aluminum alloy
14	Magnet	—

Component Parts

No.	Description		Material
15	Wear ring		Resin
16	Piston seal		NBR
17	Bearing		Bearing steel
18	Bearing		Bearing steel
19	Cross recessed screw N	o. 0	Steel wire
	Cross recessed screw	Size: 10	Stainless steel
20	Hexagon this socket head bolt	Size: 20 to 50	Chrome molybdenum steel
21	Hexagon socket head ca	p screw	Stainless steel
22	Hexagon socket head ca	p screw	Stainless steel
23	Push nut		Stainless steel
24	Parallel pin		Carbon steel
25	Seal washer		NBR
26	Plug		Steel wire

* Individual part cannot be shipped.

Replacement Parts

Description						Par	t no.					
Description		10			20			30			50	
Seal kit		P523010-20			P523020-20			P523030-20			P523040-20	
	No.	Description	Qty.	No.	Description	Qty.	No.	Description	Qty.	No.	Description	Qty.
	4	Seal	1	4	Seal	1	4	Seal	1	4	Seal	1
Parts included	10 Gasket 1			10	Gasket	1	10	Gasket	1	10	Gasket	1
in seal kit	11	Gasket	1	11	Gasket	1	11	Gasket	1	11	Gasket	1
	15	Wear ring	4	15	Wear ring	4	15	Wear ring	4	15	Wear ring	4
	16	Piston seal	4	16	Piston seal	4	16	Piston seal	4	16	Piston seal	4
	25 Seal washer 2		2	25	Seal washer	2	25 Seal washer 2			25	Seal washer	2

A set includes all parts above.
 A grease pack (10 g) is included. When only a grease pack is needed, order with the following part number.
 Replacement parts/Grease pack part no: P523010-21 (10 g)

MSQX Series

Dimensions

(mm)
 10

																											(11111)
Size	AA	Α	AU	AV	AW	AX	AY	BA	BB	BC	BD	BE	CA	СВ	D	DD	DE	DF	DG	FA	FB	FC	FD	н	J	JA	JB
10	55.4	50	6.6	20	15.5	12	4	9.5	34.5	27.8	60	27	4.5	28.5	45h9	46h9	20H9	6	15H9	8	4	3	4.5	13	6.8	11	6.5
20	70.8	65	7.6	27.5	16	14	5	12	46	30	76	34	6	30.5	60h9	61h9	28H9	9	17H9	10	6	2.5	6.5	17	8.6	14	8.5
30	75.4	70	7.6	29	18.5	14	5	12	50	32	84	37	6.5	33.5	65h9	67h9	32H9	12	22H9	10	4.5	3	6.5	17	8.6	14	8.5
50	85.4	80	10	38	22	19	6	15.5	63	37.5	100	50	10	37.5	75h9	77h9	35H9	13	26H9	12	5	3	7.5	20	10.5	18	10.5

																									(mm)
Size	JC	JD	JJ	JK	JU	Р	Q	S	SD	SE	SF	SU	UU	WA	WΒ	wc	WD	WE	WF	XA	ΧВ	хс	YA	YB	YC
10	M 8 x 1.25	12	M5 x 0.8	7	M 8 x 1	M5 x 0.8	34	92	9	13	45	17.7	47	15	3H9	3.5	M5 x 0.8	8	32	27	3H9	3.5	19	3H9	3.5
20	M10 x 1.5	15	M6 x 1	8	M10 x 1	M5 x 0.8	37	117	10	12	60	25	54	20.5	4H9	4.5	M6 x 1	10	43	36	4H9	4.5	24	4H9	4.5
30	M10 x 1.5	15	M6 x 1	8	M10 x 1	Rc 1/8**	40	127	11.5	14	65	25	57	23	4H9	4.5	M6 x 1	10	48	39	4H9	4.5	28	4H9	4.5
50	M12 x 1.75	18	M8 x 1.25	8	M14 x 1.5	Rc 1/8**	46	152	14.5	15	75	31.4	66	26.5	5H9	5.5	M8 x 1.25	12	55	45	5H9	5.5	33	5H9	5.5

SMC

** In addition to Rc 1/8, G 1/8, NPT 1/8 and NPTF 1/8 are also available.

Low-Speed Rotary Table Rack & Pinion Type **MSQX** Series

Auto Switch Proper Mounting Position (at Rotation End Detection)

ĺ		Rotation			Reed switch		Solid state switch							
	Size	angle	A	A B Operating a (θ m)		Hysteresis angle	A	в	Operating angle (θ m)	Hysteresis angle				
	10	190°	27	45	90°	10°	31	49	42°	10°				
	20	190°	35	62	80°	10°	39	66	35°	10°				
Î	30	190°	39	68	65°	10°	43	72	30°	10°				
Î	50	190°	49	83	50°	10°	53	87	24°	10°				

Operating angle 0m: Value of the operating range of single auto switch (Lm) as represented by rotation angle for shaft Hysteresis angle: Value of the auto switch hysteresis as represented by angle

Note) Since the above values are only provided as a guideline, they are not guaranteed. In the actual setting, adjust them after confirming the auto switch operating condition.

MSQX Series Made to Order Specifications:

Symbol X150/X151/X152/X153

Please contact SMC for detailed specifications, lead times and prices.

With External Stopper

Prevent holding torgue from being halved at the rotation end.

How to Order

Dimensions

Note) This component does not exist for 180° type

																(11111)
Size	EA	EB	EC	ED	EE	EF	GA	GB	GC	GD	GE	K	NA	NB	NC	ND
10	47.1	44.3	33.5	14	91.4	80	20	15.6	11	7.5	45.2	M8 x 1	10	5.5	12.5	4
20	57.1	55.3	43	18	112.4	100	25	19.5	14	9.5	56.4	M10 x 1	14	8	16.5	4
30	58.4	60.3	46	19.5	118.7	110	27	21.5	14	9.5	61.5	M10 x 1	14	8	16.5	4
50	74.4	71.4	56	22	145.8	130	32	28	18	11.5	72.9	M14 x 1.5	19	8.5	19.5	6

* Dimensions other than the above are the same as standard.

0.5

CRQ2X/MSQX Series Specific Product Precautions

Be sure to read this before handling the products. Refer to page 7 for safety instructions, pages 8 to 13 for rotary actuator precautions, and pages 18 to 22 for auto switch precautions.

Selection

A Caution

- 1. Changes in speed occur in applications in which there are changes to the load during operation, such as the load being lifted (lowered) against gravity.
- 2. The purpose of this product is stable rotation at low-speed.

It does not provide any function to cushion the impact at the operation start or end.

3. Speed may vary at the rotation end depending on operating conditions. (This phenomenon can be avoided by using the external stopper.)