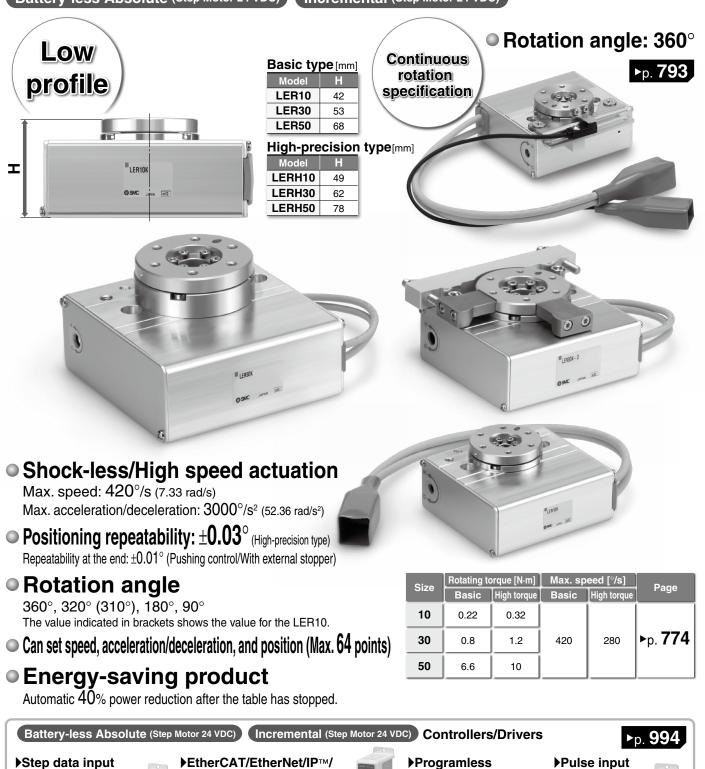
Rotary Table LER Series


For details, refer to page 1343 and onward

(RoHS)

Battery-less Absolute (Step Motor 24 VDC)

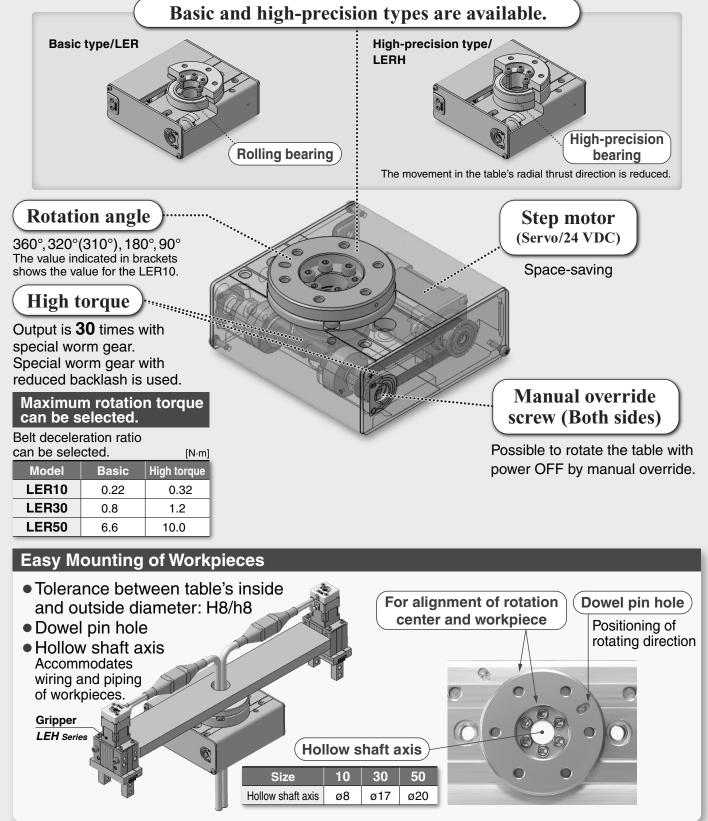
Incremental (Step Motor 24 VDC)

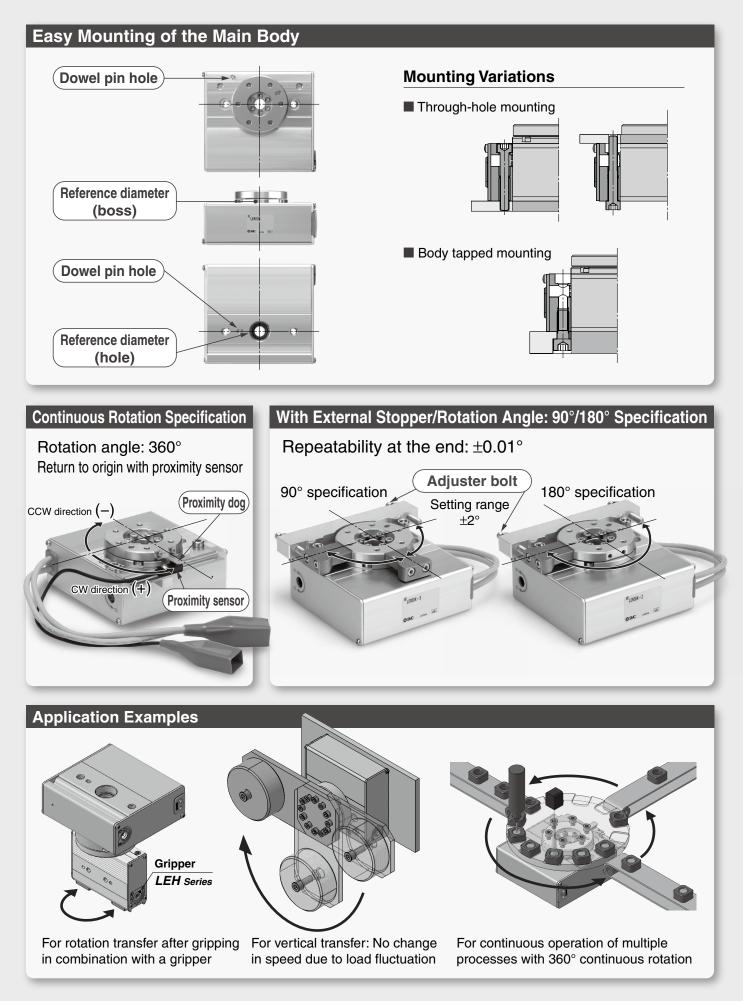
type JXC51/61 Series

64 positioning points
Input using controller setting kit or teaching box

EtherCAT/EtherNet/IP™/ PROFINET/DeviceNet®/ IO-Link/CC-Link direct input type JXCE□/91/P1/D1/L□/M1 Series Programles type*1
 LECP1 Series
 14 positioning points
 Control panel setting

*1 Excludes the battery-less absolute


Battery-less Absolute (Step Motor 24 VDC)


Restart from the last stop position is possible after recovery of the power supply.

Easy operation restart after recovery of the power supply

The position information is held by the encoder even when the power supply is turned off. A return to origin operation is not necessary when the power supply is recovered. Does not require the use of batteries. Reduced maintenance

Batteries are not used to store the position information. Therefore, there is no need to store spare batteries or replace dead batteries.

CONTENTS

Battery-less Absolute (Step Motor 24 VDC)

Rotary Table LER Series

E.e.	Model Selection How to Order Specifications Construction Dimensions	p. 779 p. 781 p. 782
------	---	----------------------------

Incremental (Step Motor 24 VDC)

Rotary Table LER Series

P. 774 p. 785 p. 788 Construction p. 789 p. 790

Incremental (Step Motor 24 VDC)

Continuous Rotation Specification Rotary Table LER Series

Specific Product Precautions

Model Selection	
How to Order	p. 793
Specifications	
Construction	p. 797
Dimensions	p. 798

Incremental (Step Motor 24 VDC) Controllers

Step Data Input Type/JXC51/61 Series EtherCAT/EtherNet/IP™/PROFINET/DeviceNet®/IO-Link/CC-Link Direct Input Type/JXCE□/91/P1/D1/L□/M1 Series Gateway Unit/LEC-G Series Programless Controller/LECP1 Series Step Motor Driver/LECPA Series	p. 1063 p. 1038 p. 1042
Actuator Cable Communication Cable for Controller Setting/ <i>LEC-W2A-</i> □ Teaching Box/ <i>LEC-T1</i>	p. 1094

3-Axis Step Motor Controller

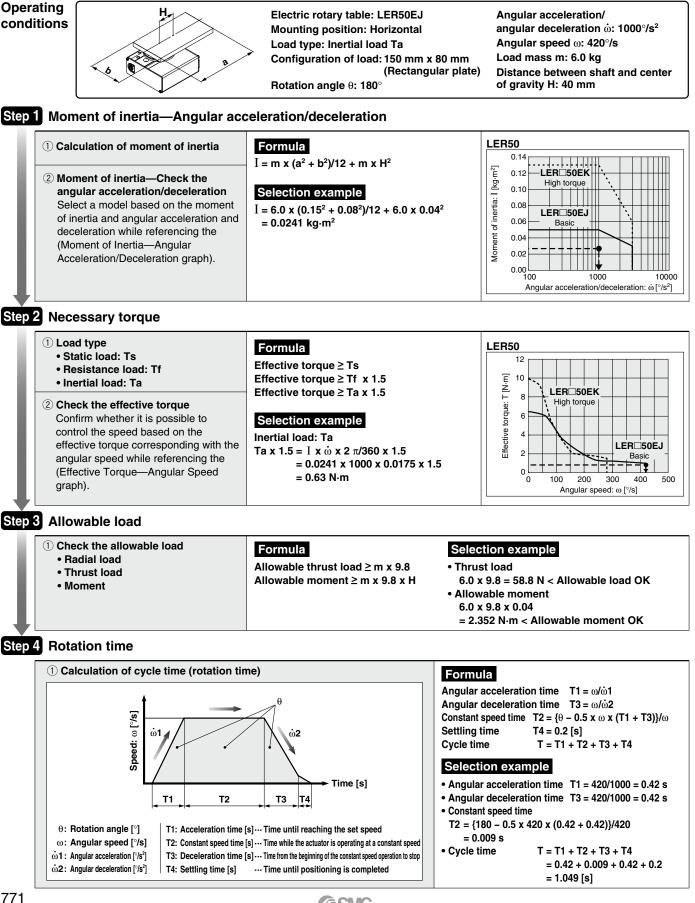
	. 1070
EtherNet/IP™ Type/ <i>JXC92 Series</i>	 p. 1079

4-Axis Step Motor (Servo/24 VDC) Controller

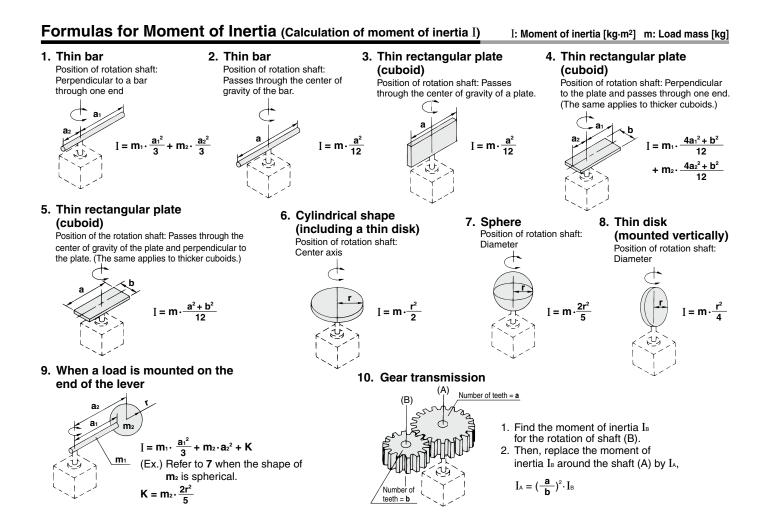
Parallel I/O Type/JXC73/83 Series	β	o. 1081
EtherNet/IP™ Type/ <i>JXC93 series</i>	p	o. 1081

Rotary Table

```
LER Series
```

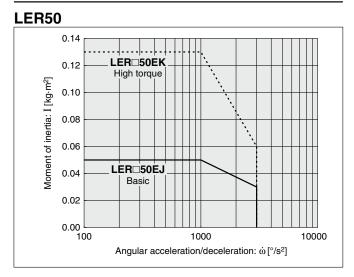


LER□E Series ▶ p. 779

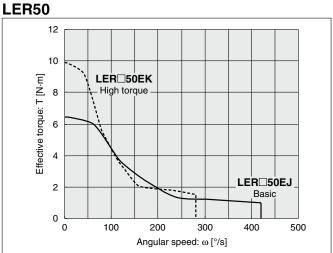


Selection Procedure

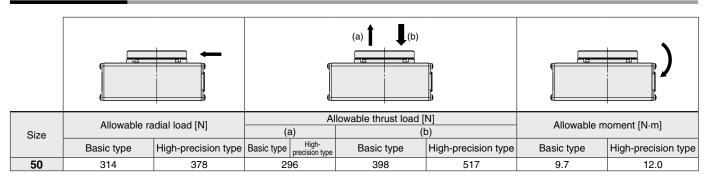
Model Selection LER Series Battery-less Absolute (Step Motor 24 VDC)


Load Type

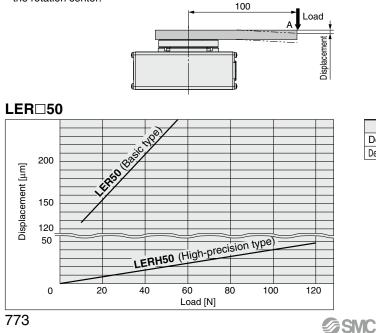
		Load type			
Static load: Ts		nce load: Tf	Inertial load: Ta Rotate the load with inertia.		
Only pressing force is necessary. (e.g. for clamping)	Gravity or friction force is	s applied to rotating direction.			
L F	Gravity is applied.	Friction force is applied.	Center of rotation and center of gravity of the load are concentric.	Rotation shaft is vertical (up and down).	
 Ts = F·L Ts: Static load [N·m] F : Clamping force [N] L : Distance from the rotation center to the clamping position [m] 		eleration 9.8 [m/s²] rotation center to the point e gravity or friction force [m]	Ta = I· $\dot{\omega}$ ·2 π/360 (Ta = I· $\dot{\omega}$ ·0.0175)Ta: Inertial load [N·m]I : Moment of inertia [kg·m² $\dot{\omega}$: Angular acceleration/de ω : Angular speed [°/s]	-	
Necessary torque: T = Ts	Necessary tor	que: T = Tf x 1.5*1	Necessary torque: T =	= Ta x 1.5*1	
 Resistance load: Gravity or friction force is ap Ex. 1) Rotation shaft is horizontal (lateral), and the center of gravity of the load Ex. 2) Load moves by sliding on the floor. * The total of resistance load and i necessary torque. T = (Tf + Ta) > 	and the rotation center are not concentric. nertial load is the	 Ex. 1) Rotation shaft is verified to a station shaft is ho of gravity of the load * Necessary torque 	rizontal (lateral), and rotation cer	nter and the center	


SMC

Battery-less Absolute (Step Motor 24 VDC)


Moment of Inertia—Angular Acceleration/Deceleration

Effective Torque—Angular Speed



Allowable Load

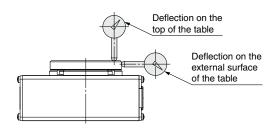
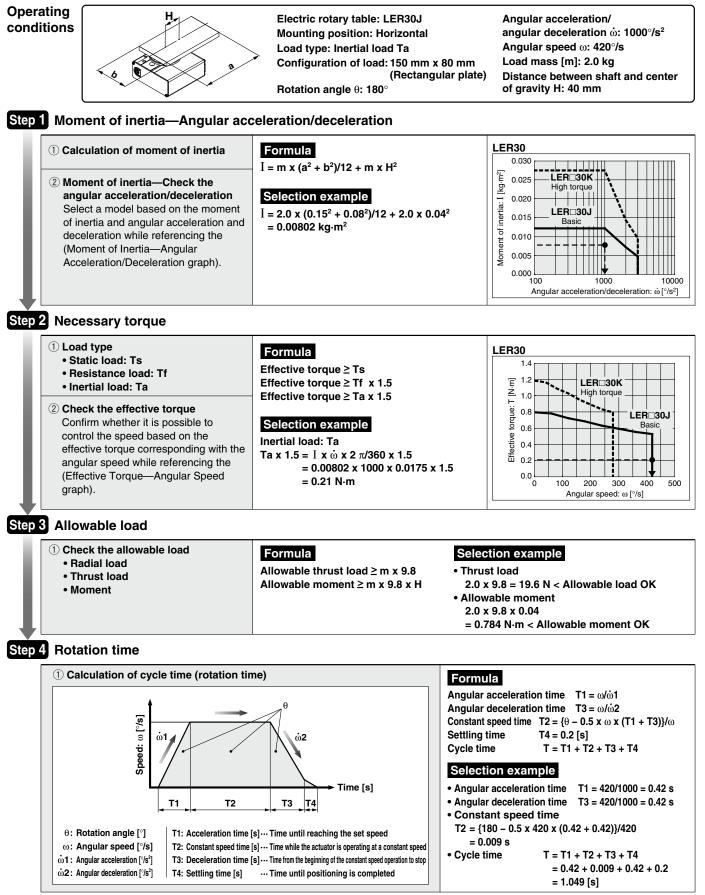


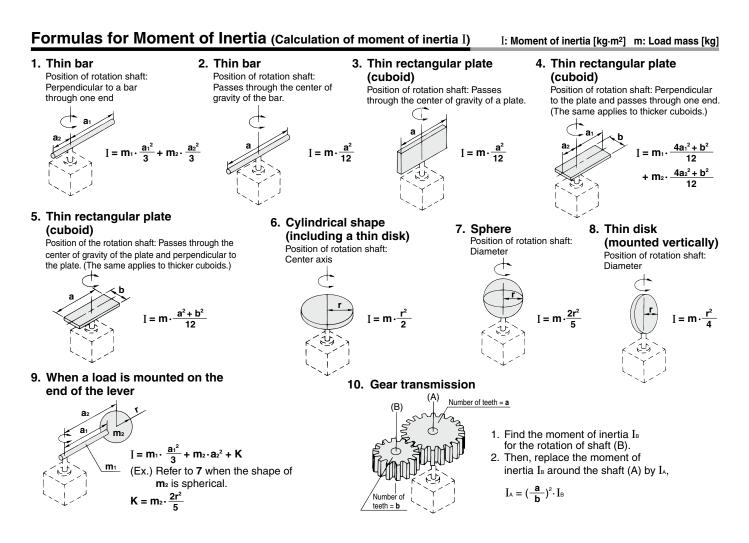
Table Displacement (Reference Value)

 Displacement at point A when a load is applied to point A 100 mm away from the rotation center.

Deflection Accuracy: Displacement at 180° Rotation (Guide)


[mm]

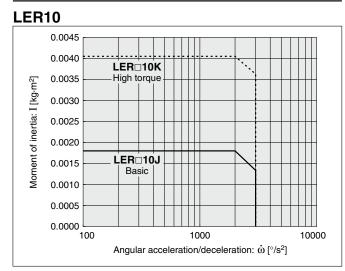
		[1111]
Measured part	LER (Basic type)	LERH (High-precision type)
Deflection on the top of the table	0.1	0.03
Deflection on the external surface of the table	0.1	0.03

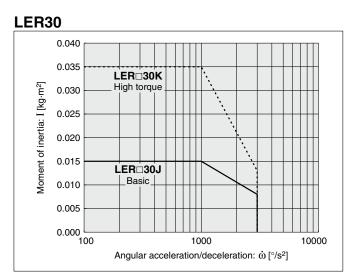


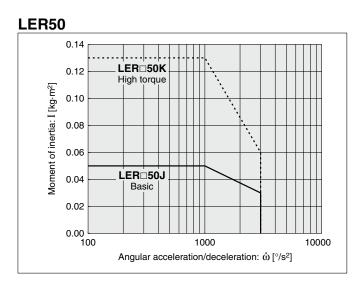
Selection Procedure

LER Series Incremental (Step Motor 24 VDC)

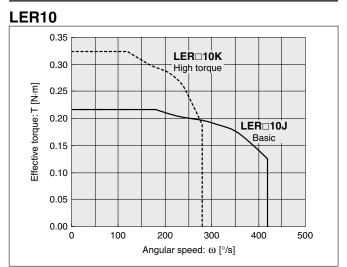
Load Type

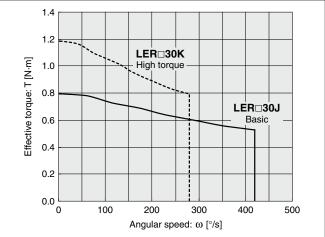

	Load type			
Resista	nce load: Tf	Inertial load: Ta		
Gravity or friction force is	s applied to rotating direction.	Rotate the load with inertia.		
Gravity is applied.	Friction force is applied.	Center of rotation and center of gravity of the load are concentric.	Rotation shaft is vertical (up and down).	
 m: Load mass [kg] g: Gravitational acce L: Distance from the of application of th 	leration 9.8 [m/s ²] rotation center to the point e gravity or friction force [m]	Ta = I· $\dot{\omega}$ ·2 π/360 (Ta = I· $\dot{\omega}$ ·0.0175)Ta: Inertial load [N·m]I : Moment of inertia [kg·m² $\dot{\omega}$: Angular acceleration/dec ω : Angular speed [°/s]		
Necessary tor	que: T = Tf x 1.5*1	Necessary torque: T =	• Ta x 1.5*1	
plied to rotating direction. and the rotation center are not concentric. nertial load is the t 1.5	 Ex. 1) Rotation shaft is ver Ex. 2) Rotation shaft is ho of gravity of the load * Necessary torque 	rtical (up and down). rizontal (lateral), and rotation cer d are concentric.	nter and the center	
	ResistaGravity or friction force isGravity is applied. \checkmark \checkmark \downarrow <	Image: Colspan="2">Image: Colspan="2" Image: Colspan="2" Ima	Resistance load: TfInertial loadGravity or friction force is applied to rotating direction.Rotate the load withGravity is applied.Friction force is applied.Center of rotation and center of gravity of the load are concentric.Gravity is applied to rotating direction.Friction force is applied to rotating direction.Ta = $I \cdot \dot{\omega} \cdot 2 \pi/360$ Tf = m·g·LTf = $\mu \cdot m \cdot g \cdot L$ Tf = $\mu \cdot m \cdot g \cdot L$ Tf: Resistance load [N·m] m: Load mass [kg]Tf = $\mu \cdot m \cdot g \cdot L$ Ta = $I \cdot \dot{\omega} \cdot 0.0175$)Ta: Inertial load [N·m] m: Load mass [kg]Ta: Inertial load [N·m] μ : Friction coefficientNecessary torque: T = Tf x 1.5*1Necessary torque: T = Tf x 1.5*1Necessary torque: T =plied to rotating direction. and the rotation center are not concentric.• Not resistance load: Neither gravity or friction force is applied to EX. 1) Rotation shaft is vertical (up and down). EX. 2) Rotation shaft is horizontal (lateral), and rotation center of gravity of the load are concentric. * Necessary torque is inertial load only. T = Ta x 1.	

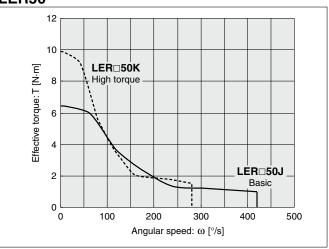

SMC


For the LECPA/JXC³, refer to page 777.

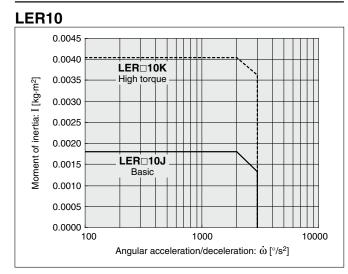
For Step Motor (Servo/24 VDC) JXC 1, LECP1

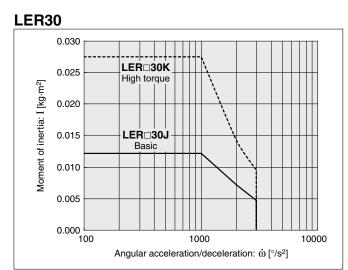

Moment of Inertia—Angular Acceleration/Deceleration

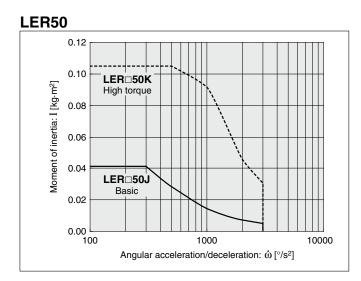



Effective Torque—Angular Speed

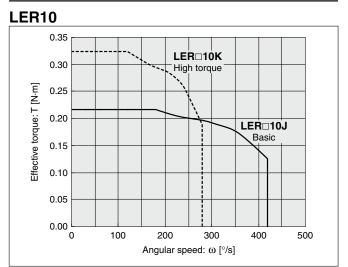
LER30

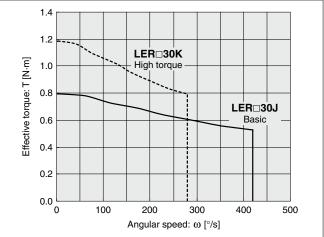






For Step Motor (Servo/24 VDC) LECPA, $JXC\square_3^2$

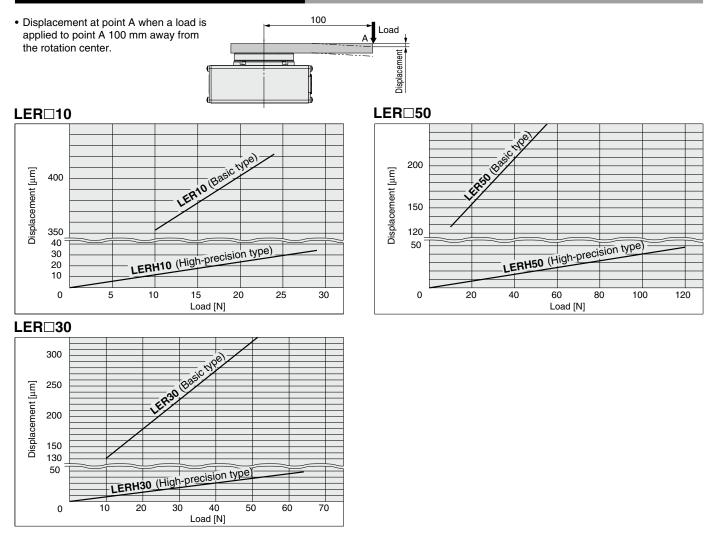

Moment of Inertia—Angular Acceleration/Deceleration

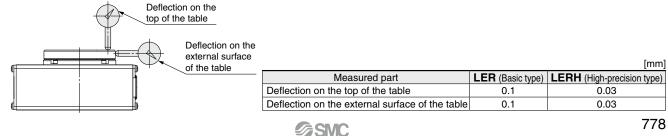



Effective Torque—Angular Speed

LER30

LER50




Allowable Load

			(a) t (b)					
Size	Allowable ra	adial load [N]	[N] (a)		owable thrust load [N] b)	Allowable m	oment [N⋅m]
3120	Basic type	High-precision type			Basic type	High-precision type	Basic type	High-precision type
10	78	86		4	78	107	2.4	2.9
30	196	233	19	97	363	398	5.3	6.4
50	314	378	29	96	398	517	9.7	12.0

Table Displacement (Reference Value)

Deflection Accuracy: Displacement at 180° Rotation (Guide)

Battery-less Absolute (Step Motor 24 VDC)

Rotary Table

THE AN IN

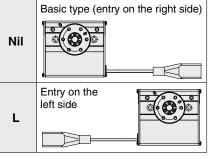
How to Order

LER 50 E K - - R1 CD17T

For details on controllers, refer to the next page.

1 Tal	ole accuracy
Nil	Basic type
Н	High-precision type

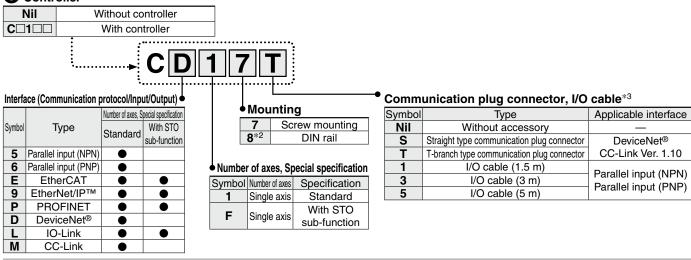
2 Size


3 Motor type

	Symbol	Туре	Compatib	ole controlle	ers/drivers
E (Step motor 24 VDC) JXCE1 JXCL1 JXCPF	E	Battery-less absolute (Step motor 24 VDC)	JXC61 JXCE1	JXCD1 JXCL1	JXCEF JXC9F JXCPF JXCLF

4 Ma	Max. rotating torque [N·m]							
Κ	High torque	10						
J	Basic	6.6						

5 Rotation angle [°]				
Nil	320			
2	External stopper: 180			
3	External stopper: 90			


6 Motor cable entry

Actuator cable type/length

Robotic	cable		[m]
Nil	None	R8	8*1
R1	1.5	RA	10* ¹
R3	3	RB	15* ¹
R5	5	RC	20*1

8 Controller

*1 Produced upon receipt of order

*2 The DIN rail is not included. It must be ordered separately.

≜Caution

[CE/UKCA-compliant products]

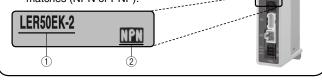
EMC compliance was tested by combining the electric actuator LER series and the controller JXC series.

The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.

[Precautions relating to differences in controller versions]

When the JXC series is to be used in combination with the battery-less absolute encoder, use a controller that is version V3.4 or S3.4 or higher. For details, refer to pages 1077 and 1078.

[UL certification]


The JXC series controllers used in combination with electric actuators are UL certified.

*3 Select "Nil" for anything other than DeviceNet®, CC-Link, or parallel input.

Select "Nil," "S," or "T" for DeviceNet[®] or CC-Link. Select "Nil," "1," "3," or "5" for parallel input.

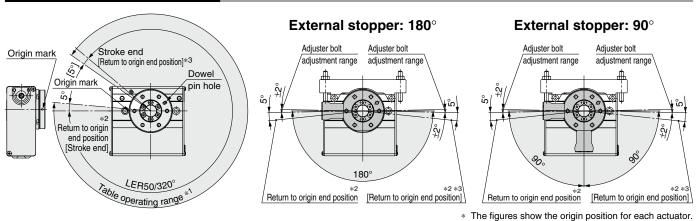
The actuator and controller are sold as a package. Confirm that the combination of the controller and actuator is correct.

- <Check the following before use.>
- Check the actuator label for the model number. This number should match that of the controller.
- ② Check that the Parallel I/O configuration matches (NPN or PNP).

Refer to the Operation Manual for using the products.
 Please download it via our website: https://www.smcworld.com

	Step data input type	EtherCAT direct input type	EtherCAT direct input type with STO sub-function	EtherNet/IP™ direct input type	EtherNet/IP™ direct input type with STO sub-function	PROFINET direct input type	PROFINET direct input type with STO sub-function	DeviceNet® direct input type	IO-Link direct input type	IO-Link direct input type with STO sub-function	CC-Link direct input type
Туре											
Series	JXC51 JXC61	JXCE1	JXCEF	JXC91	JXC9F	JXCP1	JXCPF	JXCD1	JXCL1	JXCLF	JXCM1
Features	Parallel I/O	EtherCAT direct input	EtherCAT direct input with STO sub-function	EtherNet/IP™ direct input	EtherNet/IP™ direct input with STO sub-function	PROFINET direct input	PROFINET direct input with STO sub-function	DeviceNet [®] direct input	IO-Link direct input	IO-Link direct input with STO sub-function	CC-Link direct input
Compatible motor		Battery-less absolute (Step motor 24 VDC)									
Max. number of						64 points					
step data						04 points					
Power supply voltage						24 VDC					
Reference page	1017					10	63				

- *1 Pushing force accuracy is LER50: ±20% (F.S.).
- *2 The angular acceleration, angular deceleration, and angular speed may fluctuate due to variations in the moment of inertia.
- Refer to the "Moment of Inertia—Angular Acceleration/ Deceleration, Effective Torque-Angular Speed" graphs on page 773 for confirmation.
- *3 The speed and force may change depending on the cable length, load, and mounting conditions. Furthermore, if the cable length exceeds 5 m, then it will decrease by up to 10%for each 5 m. (At 15 m: Reduced by up to 20%)
- *4 A reference value for correcting errors in reciprocal operation *5 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz. The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
- *6 Indicates the max. power during operation (including the controller)


This value can be used for the selection of the power supply.

Specifications

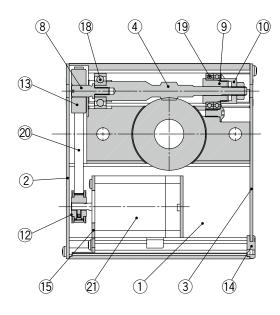
Battery-less Absolute (Step Motor 24 VDC)

<u> </u>	<u>ittory</u>					
		Model		LER□50EK	LER□50EJ	
	Rotation angle [°]		320			
	Lead			7.5	12	
	Max. rotating torque [N·m]			10	6.6	
) to 50% [N⋅m]*1 *3	4.0 to 5.0	2.6 to 3.3	
			rtia [kg⋅m²] *2 *3	0.13	0.05	
e	Angul	ar speed [°/s	5] *2 *3	20 to 280	30 to 420	
ž	Pushi	ng speed [°/	s]	20	30	
Basic type	Max. ang	gular acceleration	/deceleration [°/s ²]*2	30	00	
щ	Bookl	ash [°]	Basic type	±0	.2	
su	Dacki	asii[]	High-precision type	±0	.1	
tio	Positi	oning	Basic type	±0.	05	
fice	repea	tability [°]	High-precision type	±0.	03	
eci	Last	nation [0]*4	Basic type	0.3 0	r less	
ds	LOSU	notion [°]*4	High-precision type	0.2 or less		
Actuator specifications	Impact	/Vibration res	sistance [m/s ²]*5	150/30		
ctr	Actuation type			Special worm gear + Belt drive		
Ā	Max. operating frequency [c.p.m]		60			
	Operating temp. range [°C]		5 to 40			
	Operating humidity range [%RH]		90 or less (No condensation)			
	Enclosure			IP20		
	Weigh	at [ka]	Basic type	2.2		
	weigi	. [v9]	High-precision type	2.	4	
			-2/	18	30	
ø	Rotati	on angle [°]	arm (1 pc.)		-	
ţ			-3/ arm (2 pcs.)	9	0	
External stopper type		tability at the sternal stopp		±0.01		
st	Extern	nal stopper s	etting range [°]	±	2	
rna		-2/external	Basic type	2.	5	
xte	Weight	arm (1 pc.)	High-precision type	2.7		
ш	[kg]	-3/external	Basic type	2.	6	
		arm (1 pc.)	High-precision type	2.	8	
ions	Motor	size			42	
fficat	Motor	type		Battery-less absolute	(Step motor 24 VDC)	
speci	Encod	ler		Battery-les	s absolute	
Electric specifications	Power	r supply volt	age [V]	24 VDC ±10%		
Elec	Power	r [W] *6		Max. power 57		

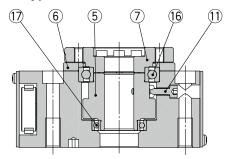
Table Rotation Angle Range

*1 This is the range within which the table can move when it returns to origin. Make sure that workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.

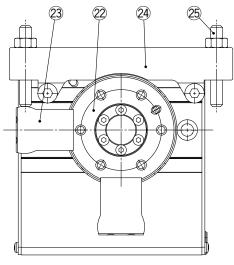
*2 Position after returning to origin. The position varies depending on whether there is an external stopper.


*3 [] for when the direction of return to origin has changed

[®] 781



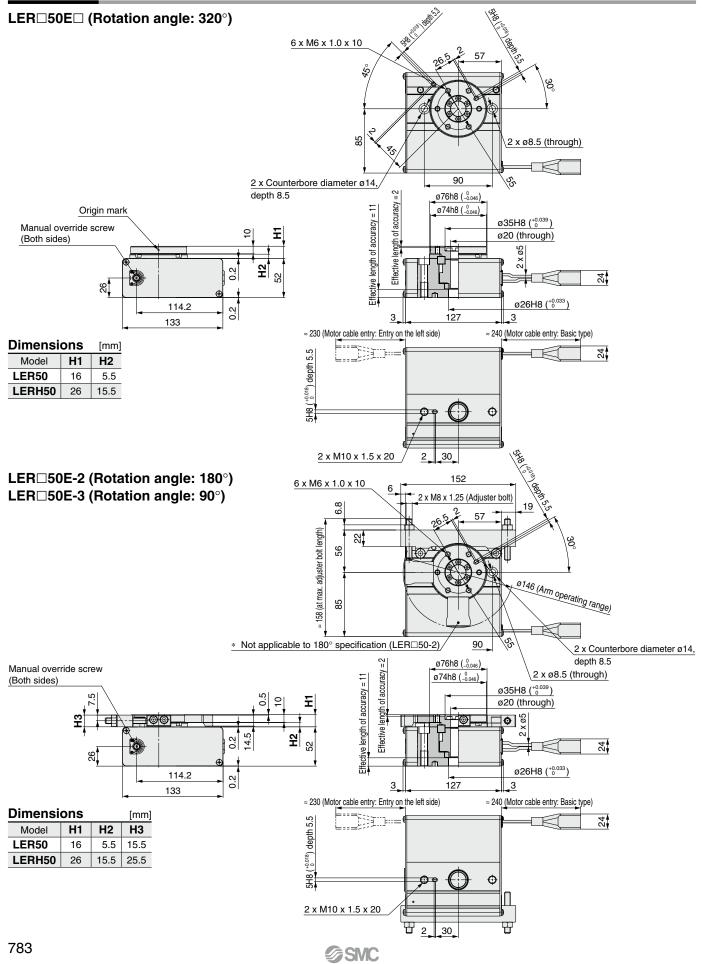
Construction


Basic type

Component Parts

001	nponent	1 4113		
No.	Des	cription	Material	Note
1	Body		Aluminum alloy	Anodized
2	Side plate A		Aluminum alloy	Anodized
3	Side plate	В	Aluminum alloy	Anodized
4	Worm scre	w	Stainless steel	Heat treatment + Special treatment
5	Worm whe	el	Stainless steel	Heat treatment + Special treatment
6	Bearing co	ver	Aluminum alloy	Anodized
7	Table		Aluminum alloy	
8	Joint		Stainless steel	
9	Bearing holder		Alloy steel	
10	Bearing stopper		Alloy steel	
11	Origin bolt		Carbon steel	
12	Pulley A		Aluminum alloy	
13	Pulley B		Aluminum alloy	
14	Grommet		NBR	
15	Motor plate		Carbon steel	
16	Basic type High- precision type	Deep groove ball bearing Special ball bearing	_	
17	Deep groov	e ball bearing	—	
18	B Deep groove ball bearing			
19	Deep groove ball bearing			
20	Belt			
21	Battery-les (Step moto		_	

External stopper type


High-precision type

Component Parts

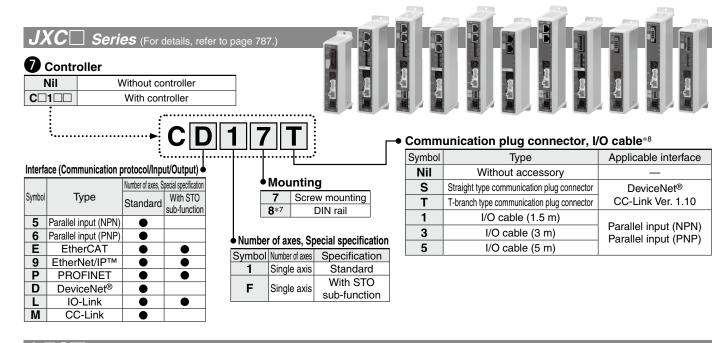
No.	Description	Material	Note
22	Table	Aluminum alloy	Anodized
23	Arm	Carbon steel	Heat treatment + Electroless nickel treated
24	Holder	Aluminum alloy	Anodized
25	Adjuster bolt	Carbon steel	Heat treatment + Chromating

Battery-less Absolute (Step Motor 24 VDC)

LER Series

Incremental (Step Motor 24 VDC)

Rotary Table LER Series LER10, 30, 50



How to Order JXC Series **CD17** LER 10 K -**R1** LEC Series AN 1 2 3 4 6 2 67 For details on controllers, refer to page 786. 2 Size Table accuracy **3** Max. rotating torque [N⋅m] 4 Rotation angle [°] Basic type LER10 LER30 LER50 LER10 Nil 10 Symbol Type Symbol LER30 LER50 K High torque Nil н High-precision type 30 0.32 1.2 10 310 320 50 J Basic 0.22 0.8 6.6 2 External stopper: 180 3 External stopper: 90 6 Actuator cable type/length*2 **5** Motor cable entry

	Basic type (entry on the right side)
Nil	
	Entry on the left side
L .	

Standard cable [m]		Robotic	cable		[m]
Nil	None	R1	1.5	RA	10* ¹
S1	1.5	R3	3	RB	15* ¹
S3	3	R5	5	RC	20*1
S 5	5	R8	8* ¹		

Rotary Table LER Series Incremental (Step Motor 24 VDC)

Series (For details, refer to page 787.)

Controller/Driver type*3

<u> </u>		
Nil	Without controller/drive	ər
1N	LECP1	NPN
1P	(Programless type)	PNP
AN	LECPA*4	NPN
AP	(Pulse input type)	PNP

8 I/O cable length*5

Without cable (Without communication plug connector)					
1.5 m					
3 m*6					
5 m* ⁶					

9 Controller/Driver mounting

Nil	Screw mounting
D	DIN rail*7

- *1 Produced upon receipt of order (Robotic cable only)
- *2 The standard cable should only be used on fixed parts. For use on moving parts, select the robotic cable. Refer to page 1092 if only the actuator cable is required.
- *3 For details on controllers/drivers and compatible motors, refer to the compatible controllers/drivers on the next page.
- *4 When pulse signals are open collector, order the current limiting resistor (LEC-PA-R-□) on page 1062 separately.
- *5 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 1047 (For LECP1) or page 1062 (For LECPA) if an I/O cable is required.

▲Caution

[CE/UKCA-compliant products]

① EMC compliance was tested by combining the electric actuator LER series and the controller LEC/JXC series.

The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.

[UL-compliant products (For the LEC series)]

When compliance with UL is required, the electric actuator and controller/ driver should be used with a UL1310 Class 2 power supply.

- *6 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector
- The DIN rail is not included. It must be ordered separately.
- *8 Select "Nil" for anything other than DeviceNet®, CC-Link, or parallel input. Select "Nil," "S," or "T" for DeviceNet® or CC-Link. Select "Nil," "1," "3," or "5" for parallel input.
 - The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.

<Check the following before use.>

(1) Check the actuator label for the model number. This number should match that of the controller/driver.

2 Check that the Parallel I/O configuration match es (NPN or PNP).

.ER10K-2

2 1 Refer to the Operation Manual for using the products. Please download it via our website: https://www.smcworld.com

LER Series Incremental (Step Motor 24 VDC)

Compatible Controllers/Drivers

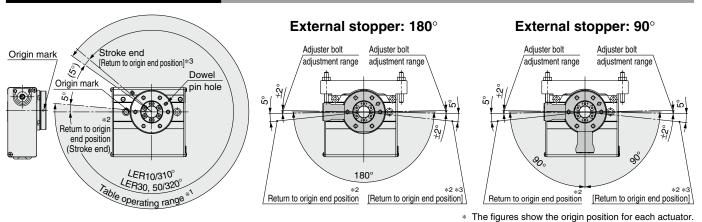
	Step data input type	Programless type	Pulse input type		
Туре					
Series	JXC51 JXC61	LECP1	LECPA		
Features	Parallel I/O	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals		
Compatible motor		Step motor (Servo/24 VDC)			
Max. number of step data	64 points	14 points	_		
Power supply voltage		24 VDC			
Reference page	1017	1042	1057		

	EtherCAT direct input type	EtherCAT direct input type with STO sub-function	EtherNet/IP™ direct input type	EtherNet/IP™ direct input type with STO sub-function	PROFINET direct input type	PROFINET direct input type with STO sub-function	DeviceNet [®] direct input type	IO-Link direct input type	IO-Link direct input type with STO sub-function	CC-Link direct input type
Туре										
Series	JXCE1	JXCEF	JXC91	JXC9F	JXCP1	JXCPF	JXCD1	JXCL1	JXCLF	JXCM1
Features	EtherCAT direct input	EtherCAT direct input with STO sub-function	EtherNet/IP™ direct input	EtherNet/IP™ direct input with STO sub-function	PROFINET direct input	PROFINET direct input with STO sub-function	DeviceNet [®] direct input	IO-Link direct input	IO-Link direct input with STO sub-function	CC-Link direct input
Compatible motor		Step motor (Servo/24 VDC)								
Max. number of step data	64 points									
Power supply voltage		24 VDC								
Reference page					10	63				

Rotary Table LER Series

- *1 Pushing force accuracy is LER10: ±30% (F.S.), LER30: ±25% (F.S.), LER50: ±20% (F.S.).
- *2 The angular acceleration, angular deceleration and angular speed may fluctuate due to variations in the moment of inertia.
 Define to the "Mamph of Inertia, Angular Acceleration"

Refer to the "Moment of Inertia—Angular Acceleration/ Deceleration, Effective Torque—Angular Speed" graphs on pages 776 and 777 for confirmation.


- *3 The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m, then it will decrease by up to 10% for each 5 m. (At 15 m: Reduced by up to 20%)
- *4 A reference value for correcting errors in reciprocal operation *5 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz. The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
- *6 Indicates the max. power during operation (including the controller) This value can be used for the selection of the power supply.

Specifications

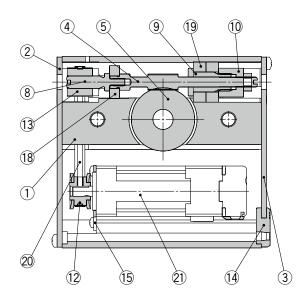
Step Motor (Servo/24 VDC)

	2 6 0 3.3 05 04 420							
$ \begin{array}{ c c c c c c } \hline & 8 & 12 & 8 & 12 & 7.5 & 1 \\ \hline Max. rotating torque [N-m] & 0.32 & 0.22 & 1.2 & 0.8 & 10 & 6 \\ \hline Max. pushing torque 40 to 50 % [N-m]^{s+3} & 0.13 to 0.16 & 0.09 to 0.11 & 0.48 to 0.60 & 0.32 to 0.40 & 4.0 to 5.0 & 2.6 to 1 \\ \hline Max. moment of inertia [kg·m²]^{s}2^{s+3} & \hline JXC \square f \\ LECP1 & 0.0040 & 0.0018 & \hline 0.027 & 0.012 & 0.10 & 0. \\ \hline Max. angular speed [°/s]^{s+2+3} & 20 to 280 & 30 to 420 & 20 to 280 & 0.03 to 480 & 0.03 to 48$	6) 3.3)5)4 420							
Max. rotating torque [N·m] 0.32 0.22 1.2 0.8 10 6 Max. pushing torque 40 to 50 % [N·m]*1*3 0.13 to 0.16 0.09 to 0.11 0.48 to 0.60 0.32 to 0.40 4.0 to 5.0 2.6 to Max. moment of inertia [kg·m²]*2*3 JXC□F/ LECP1 0.0040 0.0018 0.035 0.015 0.13 0. Angular speed [°/s]*2*3 20 to 280 30 to 420 20 to 280 <th>6) 3.3)5)4 420</th>	6) 3.3)5)4 420							
Max. pushing torque 40 to 50 % [N-m]*1*3 0.13 to 0.16 0.09 to 0.11 0.48 to 0.60 0.32 to 0.40 4.0 to 5.0 2.6 to Max. moment of inertia [kg-m²]*2*3 JXC□1/ LECP1 0.0040 0.0018 0.035 0.015 0.13 0. Angular speed [°/s]*2*3 LECPA JXC□3 0.0040 0.0018 0.027 0.012 0.10 0. Max. angular speed [°/s] 20 30 20 30 20 30 20 30 Max. angular acceleration/deceleration [*s]*2 300 to 420 20 to 280 30 to 420 20 to 280 3) 3.3)5)4 420							
$ \begin{array}{ c c c c c c } \hline \mbox{Max. moment of inertia [kg·m²]*2*3} & JXC \square I/ JXC \square F \\ LECP1 & 0.0040 & 0.0018 & 0.035 & 0.015 & 0.13 & 0. \\ \hline \mbox{Max. moment of inertia [kg·m²]*2*3} & 20 to 280 & 30 to 420 & 20 to 280 & 10 to 280 & 10 to 280 & 1$)5)4 420							
Max. moment of inertia [kg·m²]*2*3 JXC□F LECP1 LECPA JXC□3 0.0040 0.0018 0.035 0.015 0.13 0.0 Angular speed [°/s]*2*3 20 to 280 30 to 420 20 to)4 420							
LECPA JXC[3] 0.027 0.012 0.10 0. Angular speed [°/s]*2*3 20 to 280 30 to 420 20 to 280	420							
Pushing speed [7/s] 20 30 30 20 <th></th>								
Pushing speed [7/s] 20 30 30 20 <th>0</th>	0							
Actuation type Special worm gear + Belt drive Max. operating frequency [c.p.m] 60 Operating temp. range [°C] 5 to 40 Operating humidity range [%RH] 90 or less (No condensation)								
Actuation type Special worm gear + Belt drive Max. operating frequency [c.p.m] 60 Operating temp. range [°C] 5 to 40 Operating humidity range [%RH] 90 or less (No condensation)								
Actuation type Special worm gear + Belt drive Max. operating frequency [c.p.m] 60 Operating temp. range [°C] 5 to 40 Operating humidity range [%RH] 90 or less (No condensation)								
Actuation type Special worm gear + Belt drive Max. operating frequency [c.p.m] 60 Operating temp. range [°C] 5 to 40 Operating humidity range [%RH] 90 or less (No condensation)								
Actuation type Special worm gear + Belt drive Max. operating frequency [c.p.m] 60 Operating temp. range [°C] 5 to 40 Operating humidity range [%RH] 90 or less (No condensation)								
Actuation type Special worm gear + Belt drive Max. operating frequency [c.p.m] 60 Operating temp. range [°C] 5 to 40 Operating humidity range [%RH] 90 or less (No condensation)								
Actuation type Special worm gear + Belt drive Max. operating frequency [c.p.m] 60 Operating temp. range [°C] 5 to 40 Operating humidity range [%RH] 90 or less (No condensation)								
Actuation type Special worm gear + Belt drive Max. operating frequency [c.p.m] 60 Operating temp. range [°C] 5 to 40 Operating humidity range [%RH] 90 or less (No condensation)								
Max. operating frequency [c.p.m] 60 Operating temp. range [°C] 5 to 40 Operating humidity range [%RH] 90 or less (No condensation)								
Operating temp. range [°C] 5 to 40 Operating humidity range [%RH] 90 or less (No condensation)								
Operating humidity range [%RH] 90 or less (No condensation)								
Basic type 0.49 1.1 2.2								
Weight [kg]	2.4							
-2/ 180								
Botation angle arm (1 pc.) [°] -3/ arm (0 proc) 90								
20 arm (2 pcs.) 90								
arm (2 pcs.) Bepeatability at the end [°]/ with external stopper setting range [°] External stopper setting range [°] -2/external Basic type 0.55 1.2 2.5 High-precision type 0.61 1.4 2.7	±0.01							
External stopper setting range [°] ±2								
E -2/external Basic type 0.55 1.2 2.5								
Weight arm (1 pc.) High- precision type 0.61 1.4 2.7								
[kg] -3/external Basic type 0.57 1.2 2.6								
arm (1 pc.) High- precision type 0.63 1.4 2.8								
Motor size D20 28 42 Motor type Step motor (Servo/24 VDC) Encoder Incremental Power supply voltage [V] 24 VDC ±10% Power [W]*6 Max. power 14 Max. power 42 Max. power								
Encoder Incremental								
을 Power supply voltage [V] 24 VDC ±10%								
Power [W]*6 Max. power 14 Max. power 42 Max. power								

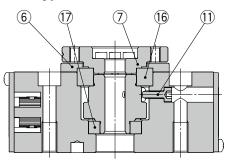
Table Rotation Angle Range

*1 This is the range within which the table can move when it returns to origin.

Make sure that workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.

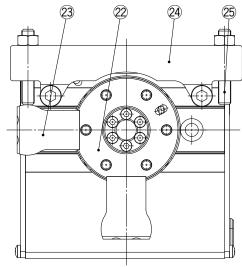

*2 Position after returning to origin The position varies depending on whether there is an external stopper.

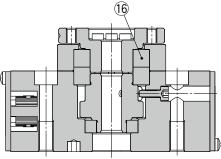
*3 [] for when the direction of return to origin has changed



LER Series Incremental (Step Motor 24 VDC)

Construction

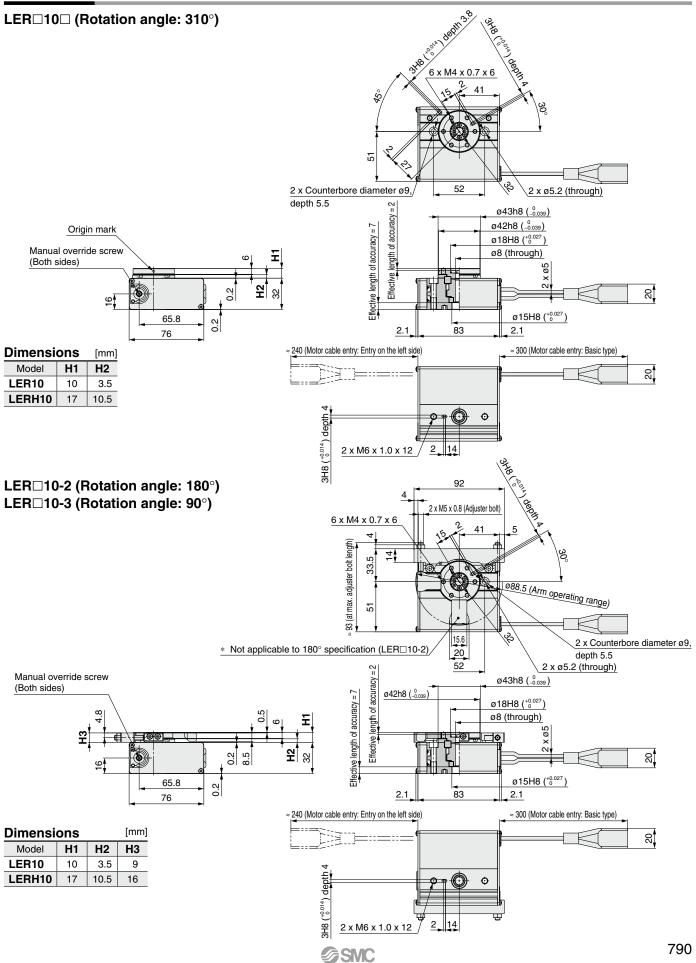

Basic type


Component Parts

Component Parts								
No.	Des	cription	Material	Note				
1	Body		Aluminum alloy	Anodized				
2	Side plate	Α	Aluminum alloy	Anodized				
3	Side plate	В	Aluminum alloy	Anodized				
4	Worm scre	w	Stainless steel	Heat treatment + Special treatment				
5	Worm whe	el	Stainless steel	Heat treatment + Special treatment				
6	Bearing co	ver	Aluminum alloy	Anodized				
7	Table		Aluminum alloy					
8	Joint		Stainless steel					
9	Bearing ho	lder	Alloy steel					
10	Bearing sto	opper	Alloy steel					
11	Origin bolt		Carbon steel					
12	Pulley A		Aluminum alloy					
13	Pulley B		Aluminum alloy					
14	Grommet		NBR					
15	Motor plate		Carbon steel					
16	Basic type High- precision type	Deep groove ball bearing Special ball bearing	_					
17		ve ball bearing						
18	Deep groov	ve ball bearing						
19		ve ball bearing						
20	Belt							
21	Step motor (Servo/24 V		_					

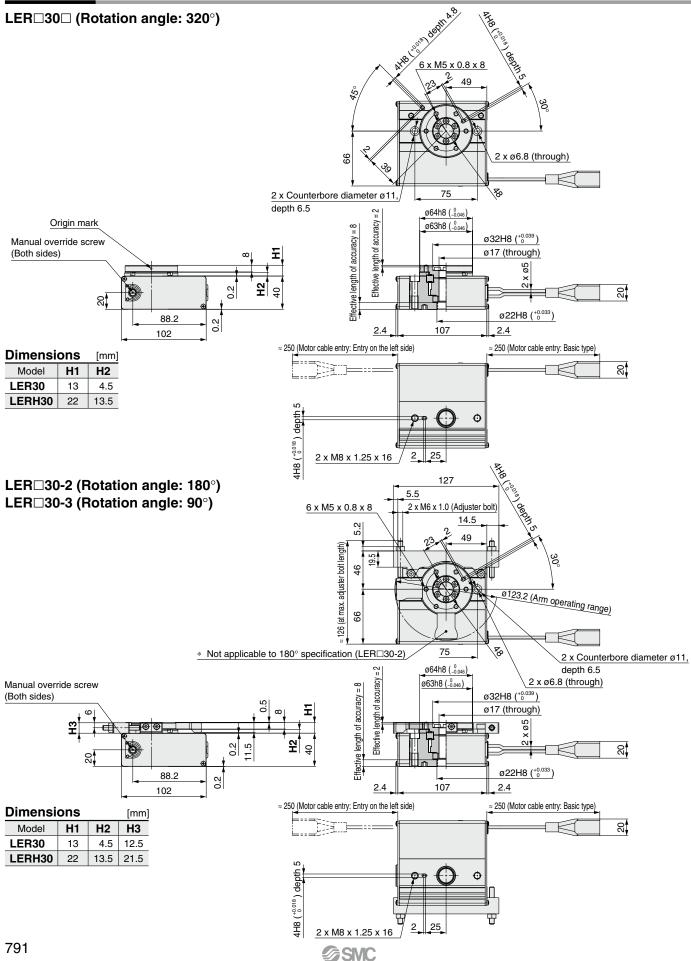
External stopper type

High-precision type

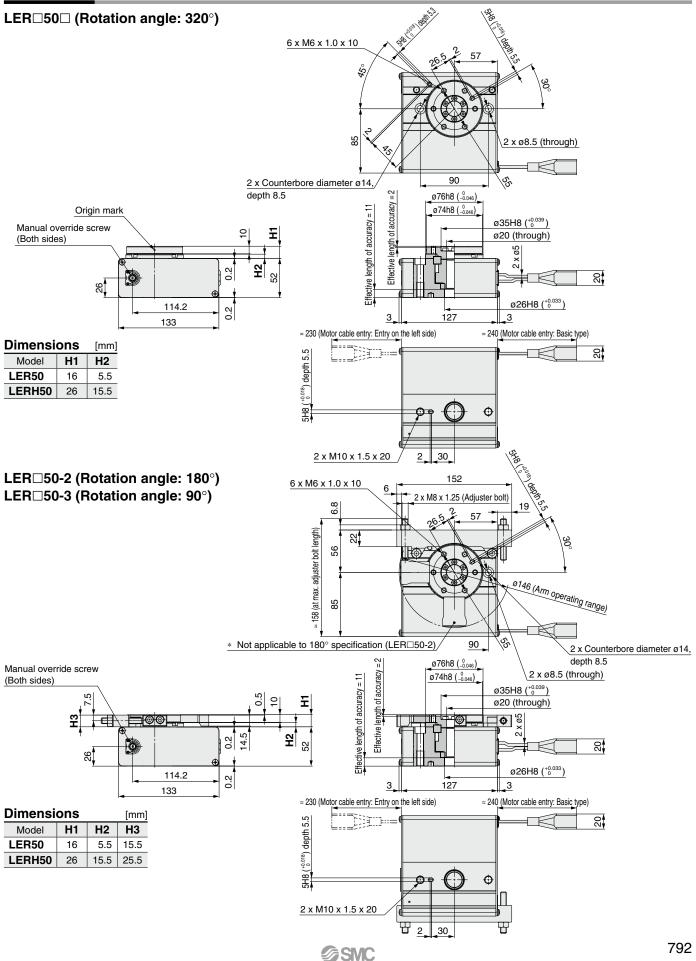


Component Parts

SMC

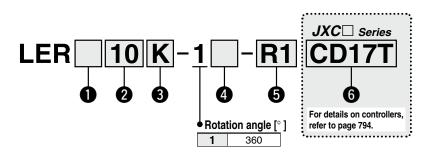

No.	Description	Material	Note	
22	Table	Aluminum alloy	Anodized	
23	Arm	Carbon steel	Heat treatment + Electroless nickel treated	
24	Holder	Aluminum alloy	Anodized	
25	Adjuster bolt	Carbon steel	Heat treatment + Chromating	

Rotary Table LER Series Incremental (Step Motor 24 VDC)



Incremental (Step Motor 24 VDC)

LER Series



Incremental (Step Motor 24 VDC)

Continuous Rotation Specification Rotary Table *LER Series* LER10, 30, 50

How to Order

Table accuracy					
Nil	Basic type				
Н	High-precision type				

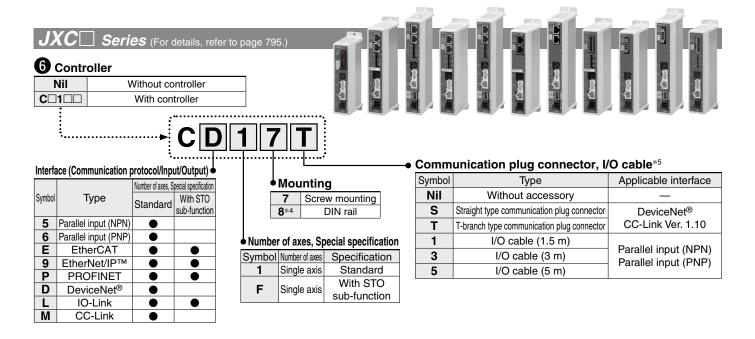
4 Motor cable entry

	-
Nil	Basic type (entry on the right side)
L	Entry on the left side

2 Size

10

30 50


Max. rotating torque [N·m]

-		<u> </u>	-		
Symbol	Туре	LER10	LER30	LER50	
Κ	High torque	0.32	1.2	10	
J	Basic	0.22	0.8	6.6	

6 Actuator cable type/length*1 *3

Standard	tandard cable [m] Robotic cable					[m]
Nil	None		R1	1.5	RA	10* ²
S1	1.5		R3	3	RB	15* ²
S3	3		R5	5	RC	20* ²
S5	5		R 8	8* ²		

Rotary Table LER Series

*1 The actuator cable is equipped with a lock and sensor.

*2 Produced upon receipt of order (Robotic cable only)

*3 The standard cable should only be used on fixed parts.

For use on moving parts, select the robotic cable. Refer to page 1092 if only the actuator cable is required.

- *4 The DIN rail is not included. It must be ordered separately.
- *5 Select "Nil" for anything other than DeviceNet[®], CC-Link, or parallel input. Select "Nil," "S," or "T" for DeviceNet[®] or CC-Link. Select "Nil," "1," "3," or "5" for parallel input.

≜Caution

[CE/UKCA-compliant products]

EMC compliance was tested by combining the electric actuator LER series and the controller LEC/JXC series.

The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.

[UL-compliant products (For the LEC series)]

When compliance with UL is required, the electric actuator and controller/ driver should be used with a UL1310 Class 2 power supply.

The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.

<Check the following before use.>

- Check the actuator label for the model number. This number should match that of the controller/driver.
 Check that the Parallel I/O configuration matches (NPN or PNP).
- * Refer to the Operation Manual for using the products. Please download it via our website: https://www.smcworld.com

Continuous Rotation Specification LER Series Incremental (Step Motor 24 VDC)

Compatible Controllers

Туре	Step data input type
Series	JXC51 JXC61
Features	Parallel I/O
Compatible motor	Step motor (Servo/24 VDC)
Max. number of step data	64 points
Power supply voltage	24 VDC
Reference page	1017

Туре	EtherCAT direct input type	EtherCAT direct input type with STO sub-function	EtherNet/IP™ direct input type	EtherNet/IP™ direct input type with STO sub-function	PROFINET direct input type	PROFINET direct input type with STO sub-function	DeviceNet® direct input type	IO-Link direct input type	IO-Link direct input type with STO sub-function	CC-Link direct input type
							Į			Ę
Series	JXCE1	JXCEF	JXC91	JXC9F	JXCP1	JXCPF	JXCD1	JXCL1	JXCLF	JXCM1
Features	EtherCAT direct input	EtherCAT direct input with STO sub-function	EtherNet/IP™ direct input	EtherNet/IP™ direct input with STO sub-function	PROFINET direct input	PROFINET direct input with STO sub-function	DeviceNet [®] direct input	IO-Link direct input	IO-Link direct input with STO sub-function	CC-Link direct input
Compatible motor		Step motor (Servo/24 VDC)								
Max. number of step data	64 points									
Power supply voltage		24 VDC								
Reference page					10	63				

Continuous Rotation Specification Rotary Table LER Series Incremental (Step Motor 24 VDC)

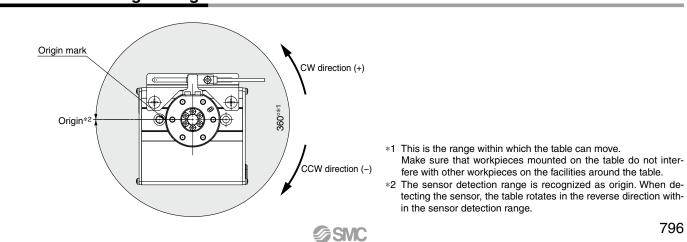
Specifications

Step Motor (Servo/24 VDC)

		$\frac{1}{2} \frac{1}{2} \frac{1}$							
	Mc	del	LER 10K	LER 10J	LER_30K	LER 30J	LER 50K	LER 50J	
	Rotation angle	e [°]	360						
	Angle setting	range [°]*7	±20 000 000						
	Max. rotating	0.32	0.22	1.2	0.8	10	6.6		
	Max. pushing torq	ue 40 to 50 % [N·m]*1 *3	0.13 to 0.16	0.09 to 0.11	0.48 to 0.60	0.32 to 0.40	4.0 to 5.0	2.6 to 3.3	
		f inertia [kg·m ²]*2 *3	0.0040	0.0018	0.035	0.015	0.13	0.05	
	Angular speed	d [°/s]*² *3	20 to 280	30 to 420	20 to 280	30 to 420	20 to 280	30 to 420	
6	Pushing spee	<u> </u>	20	30	20	30	20	30	
ő	Max. angular acceler	ration/deceleration [°/s ²] *2			30	00			
specifications	Backlash [°]	Basic type	±C	13		±0).2		
ifi	Dackiash[]	High-precision type				±C).1		
ec	Positioning	Basic type	±0.	05	±0.05				
	repeatability [°]	High-precision type	±0.00		±0.03				
Actuator	Lost motion	Basic type	0.3 or less		0.3 or less				
	[°]*4	High-precision type	0.00	1000	0.2 or less				
Act	•	n resistance [m/s ²]*5							
	Actuation type		Special worm gear + Belt drive						
		frequency [c.p.m]							
		perature range [°C]							
		nidity range [%RH]							
	Enclosure		IP20						
	Weight [kg]	Basic type	0.	-	1.2			.3	
		High-precision type		55	1.3			.5	
Suc	Motor size			20		28		42	
ati	Motor type		Step motor (Servo/24 VDC)						
ij	Encoder		Incremental						
Electric specifications		return to origin)/Input circuit							
ic.	, ,	return to origin)/Input point	1 input						
ectr	Power supply	voltage [V]	24 VDC ±10%						
Ē	Power*6		Max. po	ower 14	Max. po	ower 42	Max. po	ower 57	

*1 Pushing force accuracy is LER10: ±30% (F.S.), LER30: ±25% (F.S.), LER50: ±20% (F.S.).

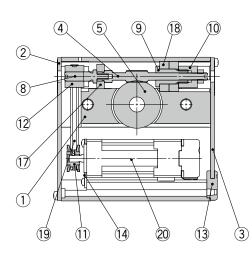
*2 The angular acceleration, angular deceleration and angular speed may fluctuate due to variations in the moment of inertia. Refer to the "Moment of Inertia—Angular Acceleration/Deceleration, Effective Torque—Angular Speed" graphs on pages 776 and 777 for confirmation.

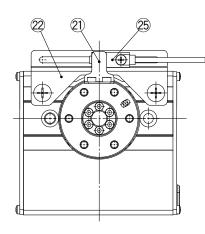

*3 The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m, then it will decrease by up to 10% for each 5 m. (At 15 m: Reduced by up to 20%)

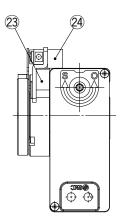
*4 A reference value for correcting errors in reciprocal operation

*5 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)

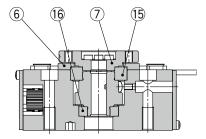
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz. The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)

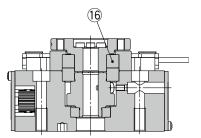

- *6 Indicates the max. power during operation (including the controller)
- This value can be used for the selection of the power supply. The angle displayed on the monitor is automatically reset to 0° every 360°. *7
- To set an angle (position), use the "Relative" movement mode. If an angle of 360° or more is set using the "Absolute" movement mode, the correct operation cannot be performed.




Table Rotation Angle Range

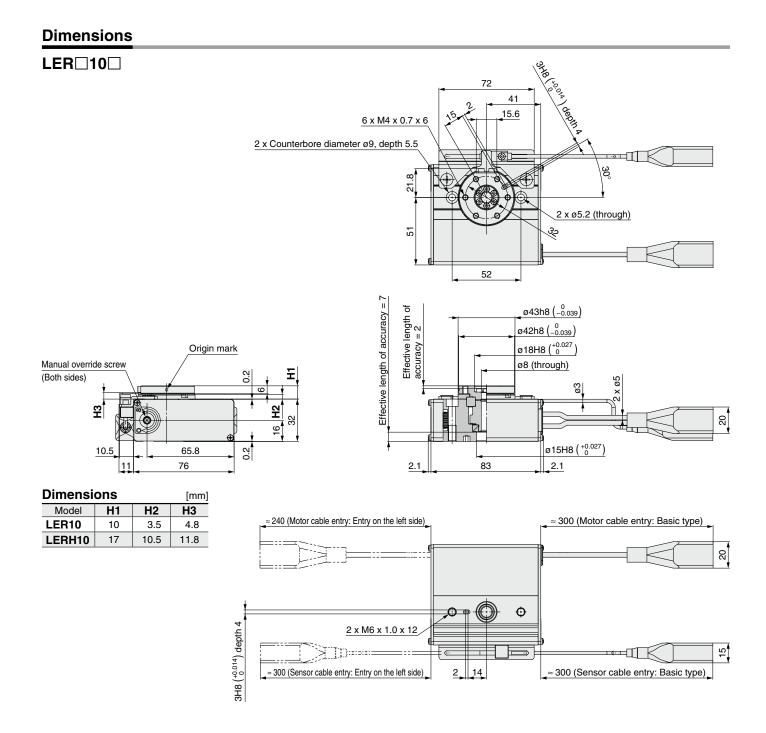
Continuous Rotation Specification LER Series Incremental (Step Motor 24 VDC)


Construction


Basic type

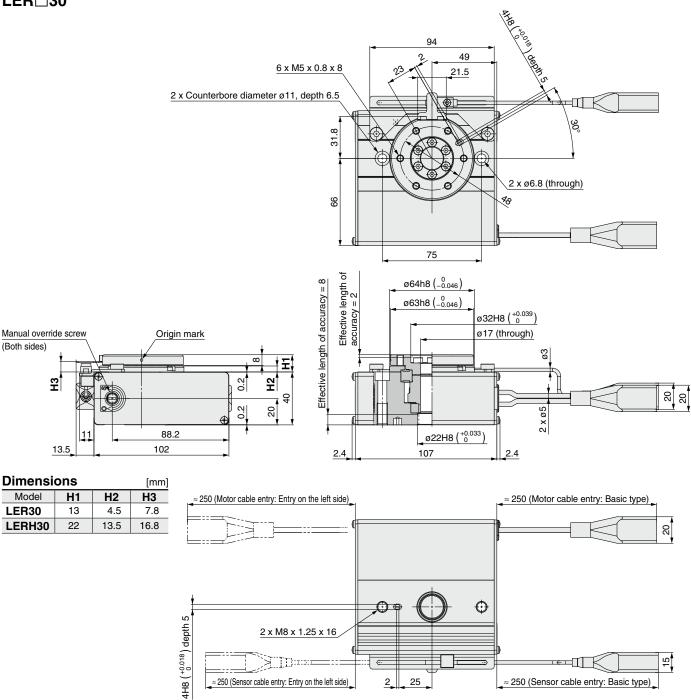
Component Parts

COL	component Parts						
No.	Description		Material	Note			
1	Body		Aluminum alloy	Anodized			
2	Side plate A		Aluminum alloy	Anodized			
3	Side plate B		Aluminum alloy	Anodized			
4	Worm screw		Stainless steel	Heat treatment + Special treatment			
5	Worm wheel		Stainless steel	Heat treatment + Special treatment			
6	Bearing cover		Aluminum alloy	Anodized			
7	Table		Aluminum alloy				
8	Joint		Stainless steel				
9	Bearing holde	er	Alloy steel				
10	Bearing stopper		Alloy steel				
11	Pulley A		Aluminum alloy				
12	Pulley B		Aluminum alloy				
13	Grommet		NBR				
14	Motor plate		Carbon steel				
15	Basic type	Deep groove ball bearing					
15	High-precision type	Special ball bearing	—				
16	Deep groove ball bearing		—				
17	Deep groove ball bearing		—				
18	Deep groove ball bearing						
19	Belt	Belt					
20	Step motor (Servo/24 VDC)						


High-precision type

Component Parts (360° type)

No.	Description	Material	Note			
21	Proximity dog	Stainless steel				
22	Sensor holder	Carbon steel	Chromating			
23	Sensor holder spacer	Aluminum alloy	Anodized (High-precision type can be used only)			
24	Square nut	Aluminum alloy				
25	Proximity sensor assembly	_				



Continuous Rotation Specification LER Series Incremental (Step Motor 24 VDC)

Dimensions

LER 30

LER Series Specific Product Precautions 1

Be sure to read this before handling the products. Refer to page 1351 for safety instructions and pages 1352 to 1357 for electric actuator precautions.

Design / Selection

Marning

- If the operating conditions involve load fluctuations, ascending/descending movements, or changes in the frictional resistance, ensure that safety measures are in place to prevent injury to the operator or damage to the equipment.
 Failure to provide such measures could accelerate the operation speed, which may be hazardous to humans, machinery, and other equipment.
- 2. Power failure may result in a decrease in the pushing force; ensure that safety measures are in place to prevent injury to the operator or damage to the equipment. When the product is used for clamping, the clamping force could be decreased due to power failure, potentially creating a hazardous situation in which the workpiece is released.

ACaution

- 1. If the operating speed is set too fast and the moment of inertia is too large, the product could be damaged. Set appropriate product operating conditions in accordance with the model selection procedure.
- 2. If more precise repeatability of the rotation angle is required, use the product with an external stopper, with repeatability of $\pm 0.01^{\circ}$ (180° and 90° with adjustment of $\pm 2^{\circ}$) or by directly stopping the workpiece using an external object utilizing the pushing operation.
- 3. When using the electric rotary table with an external stopper, or by directly stopping the load externally, be sure to set to [Pushing operation].

Also, ensure that the workpiece is not impacted externally during the positioning operation or in the range of positioning operation.

Mounting

Warning

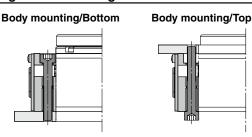
1. Do not drop or hit the electric rotary table to avoid scratching and denting the mounting surfaces.

Even a slight deformation can cause the deterioration of accuracy and operation failure.

2. When mounting the load, tighten the mounting screws within the specified torque range.

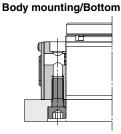
Tightening the screws with a higher torque than recommended may result in a malfunction, while tightening with a lower torque can result in the displacement of the mounting position.

Mounting the workpiece to the electric rotary table

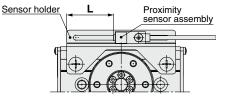

The load should be mounted with the torque specified in the following table by screwing the screw into the mounting female thread. If long screws are used, they can interfere with the body and cause a malfunction.

Model	Screw size	Thread length [mm]	Max. tightening torque [N·m]
LER□10	M4 x 0.7	6	1.4
LER 30	M5 x 0.8	8	3.0
LER 50	M6 x 1	10	5.0

3. When mounting the electric rotary table, tighten the mounting screws within the specified torque range. Tightening the screws with a higher torque than recommended may result in a malfunction, while tightening with a lower torque can result in the displacement of the mounting position.


Mounting

Marning


Model	Screw size	Max. tightening torque [N⋅m]	
LER 10	M5 x 0.8	3.0	
LER 30	M6 x 1	5.0	
LER 50	M8 x 1.25	12.0	

Body tapped mounting

Model	Screw size	Max. tightening torque [N·m]	Max. screw-in depth [mm]
LER□10	M6 x 1	5.0	12
LER 30	M8 x 1.25	12.0	16
LER 50	M10 x 1.5	25.0	20

- 4. The mounting face has holes and slots for positioning. Use them for accurate positioning of the electric rotary table if required.
- 5. If it is necessary to operate the electric rotary table when it is not energized, use the manual override screws. When it is necessary to operate the product by the manual override screws, check the position of the manual override screws of the product, and leave necessary space. Do not apply excessive torque to the manual override screws. This may lead to damage and malfunction.
- 6. The 360° type proximity sensor for return to origin can be changed \pm 30°. When changing the position of the proximity sensor for return to origin, tighten the screws with a tightening torque of 0.6 \pm 0.1 [N·m].

Model	L [mm] (Initial setting) Cable entry: Basic type/Entry on the left side (Between the sensor holder end face and proximity sensor end face)
LER[]10-1	31/31
LER[]30-1	42/42
LER[]50-1	51.5/51.5

LER Series Specific Product Precautions 2

Be sure to read this before handling the products. Refer to page 1351 for safety instructions and pages 1352 to 1357 for electric actuator precautions.

Handling

ACaution

- 1. When an external guide is used, connect it in such a way that no impact or load is applied to it. Use a free moving connector (such as a coupling).
- **2. The moving force should be the initial value (100%).** If the moving force is set below the initial value, there may be variation in the cycle time, or an alarm may be generated.

3. INP output signal

1) Positioning operation

- When the product comes within the set range of the step data [In position], the INP output signal will turn ON. Initial value: Set to [0.50] or higher.
- 2) Pushing operation

When the effective force exceeds the [Trigger LV] value (including force during operation), the INP output signal will turn ON.

The [Trigger LV] should be set between 40% and [Pushing force].

- a) To ensure that the clamping and external stop is achieved by [Pushing force], it is recommended that the [Trigger LV] be set to the same value as the [Pushing force].
- b) When the [Trigger LV] and the [Pushing force] are set below the specified range, there is the possibility that the INP output signal will turn ON from the pushing start position.

<Pushing force and trigger LV range>

	<u> </u>	
Model	Pushing force set value [%]	Trigger LV set value [%]
LER	40 to 50	40 to 50

4. When using the electric rotary table with an external stopper, or by directly stopping the load externally, be sure to set to [Pushing operation].

Also, ensure that the workpiece is not impacted externally during the positioning operation or in the range of positioning operation.

If the product is used in the positioning operation mode, there may be galling or other problems when the product/workpiece comes into contact with the external stopper or external object.

5. When the table is stopped by the pushing operation mode (stopping/clamping), set the product to a position of at least 1° away from the workpiece. (This position is referred to as the pushing start position.) If the pushing start position (stopping or clamping) is set to the same position as the external stop position, the following alarms may be generated and operation may become unstable.

a. "Posn failed"

The product cannot reach the pushing start position within the target time.

b. "Pushing ALM"

The product is pushed back from the pushing start position after starting to push.

- c. "Deviation over flow" Displacement exceeding the specified value is generated at the pushing start position.
- 6. There is no backlash effect when the product is stopped externally by pushing operation. For the return to origin, the origin position is set by the pushing operation.

Handling

▲Caution

7. For the specification with an external stopper, an angle adjuster bolt is provided as standard.

The rotation angle adjustment range is $\pm 2^\circ$ from the angle rotation end.

If the angle adjustment range is exceeded, the rotation angle may change due to insufficient strength of the external stopper. One revolution of the adjuster bolt is approximately equal to 1° of rotation.

- 8. In case that gravity is added to the workpiece along the rotation direction when product is mounted vertically, the workpiece may fall down when "SVON" signal is OFF or EMG is not energizing.
- 9. When mounting the product, secure a bending diameter of 40 mm or longer for the motor cable.
- 10. The 360° type proximity sensor for return to origin responds when it approaches anything made of metal. For this reason, be sure to keep metal objects other than the proximity dog away from the sensor during return to origin.

Recommended distance: 5 mm or more

Maintenance

ADanger

1. The high-precision type bearing is assembled by pressing into position. It is not possible to disassemble it.

Be sure to read this before handling the products. Refer to page 1351 for safety instructions and pages 1352 to 1357 for electric actuator precautions.

Handling

≜Caution

1. Absolute encoder ID mismatch error at the first connection

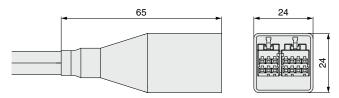
In the following cases, an "ID mismatch error" alarm occurs after the power is turned ON. Perform a return to origin operation after resetting the alarm before use.

- \cdot When an electric actuator is connected and the power is turned ON for the first time after purchase*1
- · When the actuator or motor is replaced
- · When the controller is replaced
- *1 If you have purchased an electric actuator and controller with the set part number, the pairing may have already been completed and the alarm may not be generated.

"ID mismatch error"

Operation is enabled by matching the encoder ID on the electric actuator side with the ID registered in the controller. This alarm occurs when the encoder ID is different from the registered contents of the controller. By resetting this alarm, the encoder ID is registered (paired) to the controller again.

When a controller is changed after pairing is completed				
	Encoder ID no. (* Numbers below are examples.)			
Actuator	17623	17623	17623	17623
Controller	17623	17699	17699	17623
ID mismatch error occurred?	No	Yes	Error reset \Rightarrow No	


2. In environments where strong magnetic fields are present, use may be limited.

A magnetic sensor is used in the encoder. Therefore, if the actuator motor is used in an environment where strong magnetic fields are present, malfunction or failure may occur. Do not expose the actuator motor to magnetic fields with a magnetic flux density of 1 mT or more.

When installing an electric actuator and an air cylinder with an auto switch (ex. CDQ2 series) or multiple electric actuators side by side, maintain a space of 40 mm or more around the motor. Refer to the construction drawing of the actuator motor.

3. The connector size of the motor cable is different from that of the electric actuator with an incremental encoder.

The motor cable connector of an electric actuator with a battery-less absolute encoder is different from that of an electric actuator with an incremental encoder. As the connector cover dimensions are different, take the dimensions below into consideration during the design process.

Battery-less absolute encoder connector cover dimensions