

LER□E Series ▶ p. 779

Selection Procedure

Model Selection LER Series Battery-less Absolute (Step Motor 24 VDC)

Load Type

Load type					
Static load: Ts	Resistan	ce load: Tf	Inertial load	: Ta	
Only pressing force is necessary. (e.g. for clamping)	Gravity or friction force is	applied to rotating direction.	Rotate the load with	n inertia.	
L F	Gravity is applied.	Friction force is applied.	Center of rotation and center of gravity of the load are concentric.	Rotation shaft is vertical (up and down).	
 Ts = F·L Ts: Static load [N·m] F : Clamping force [N] L : Distance from the rotation center to the clamping position [m] 	Gravity is applied to rotating direction.Friction force is applied to rotating direction. $Tf = m \cdot g \cdot L$ $Tf = \mu \cdot m \cdot g \cdot L$ Tf: Resistance load [N·m] m: Load mass [kg]g: Gravitational acceleration 9.8 [m/s ²]L: Distance from the rotation center to the point of application of the gravity or friction force [m] μ : Friction coefficient		Ta = I· $\dot{\omega}$ ·2 π/360 (Ta = I· $\dot{\omega}$ ·0.0175)Ta: Inertial load [N·m] I : Moment of inertia [kg·m² $\dot{\omega}$: Angular acceleration/dec ω : Angular speed [°/s]	2] celeration [°/s²]	
Necessary torque: T = Ts	Necessary torq	ue: T = Tf x 1.5*1	Necessary torque: T =	= Ta x 1.5*1	
 Resistance load: Gravity or friction force is ap Ex. 1) Rotation shaft is horizontal (lateral) and the center of gravity of the load Ex. 2) Load moves by sliding on the floor. * The total of resistance load and i necessary torque. T = (Tf + Ta) x 	plied to rotating direction. and the rotation center are not concentric. nertial load is the c 1.5	Not resistance load: Neither g Ex. 1) Rotation shaft is ver Ex. 2) Rotation shaft is hol of gravity of the load * Necessary torque *1 To ad	gravity or friction force is applied to tical (up and down). rizontal (lateral), and rotation cer d are concentric. e is inertial load only. T = Ta x 1. djust the speed, margin is necessar	o rotating direction. nter and the center 5 ry for Tf and Ta.	

SMC

Battery-less Absolute (Step Motor 24 VDC)

Moment of Inertia—Angular Acceleration/Deceleration

Effective Torque—Angular Speed

Allowable Load

Table Displacement (Reference Value)

 Displacement at point A when a load is applied to point A 100 mm away from the rotation center.

Deflection Accuracy: Displacement at 180° Rotation (Guide)

[mm]

		[1111]
Measured part	LER (Basic type)	LERH (High-precision type)
Deflection on the top of the table	0.1	0.03
Deflection on the external surface of the table	0.1	0.03

SMC

Battery-less Absolute (Step Motor 24 VDC)

Rotary Table LER Series LER50

E AN E

How to Order

LER 50 E K - - R1 CD17T

For details on controllers, refer to the next page.

Table accuracy				
Nil	Basic type			
Н	High-precision type			

2 Size

3 Motor type

Symbol	Туре	Compatib	ole controlle	ers/drivers
		JXC51	JXCP1	JXCEF
Е	Battery-less absolute	JXC61	JXCD1	JXC9F
	(Step motor 24 VDC)	JXCE1	JXCL1	JXCPF
		JXC91	JXCM1	JXCLF

4 Max. rotating torque [N·m]				
Κ	High torque	10		
J	Basic	6.6		

5 Rotation angle [°]				
Nil	320			
2	External stopper: 180			
3	External stopper: 90			

6 Mot	or cable entry	
	Basic type (entry	on the right side)
Nil		
	Entry on the left side	

T

Actuator cable type/length

Robotic	cable		[m]
Nil	None	R8	8* ¹
R1	1.5	RA	10* ¹
R3	3	RB	15* ¹
R5	5	RC	20*1

8 Controller

*1 Produced upon receipt of order

*2 The DIN rail is not included. It must be ordered separately.

≜Caution

[CE/UKCA-compliant products]

EMC compliance was tested by combining the electric actuator LER series and the controller JXC series.

The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.

[Precautions relating to differences in controller versions]

When the JXC series is to be used in combination with the battery-less absolute encoder, use a controller that is version V3.4 or S3.4 or higher. For details, refer to pages 1077 and 1078.

[UL certification]

The JXC series controllers used in combination with electric actuators are UL certified.

*3 Select "Nil" for anything other than DeviceNet®, CC-Link, or parallel input.

Select "Nil," "S," or "T" for DeviceNet[®] or CC-Link. Select "Nil," "1," "3," or "5" for parallel input.

The actuator and controller are sold as a package. Confirm that the combination of the controller and actuator is correct.

- <Check the following before use.>
- Check the actuator label for the model number. This number should match that of the controller.
- ② Check that the Parallel I/O configuration matches (NPN or PNP).

Refer to the Operation Manual for using the products.
 Please download it via our website: https://www.smcworld.com

	Step data input type	EtherCAT direct input type	EtherCAT direct input type with STO sub-function	EtherNet/IP™ direct input type	EtherNet/IP™ direct input type with STO sub-function	PROFINET direct input type	PROFINET direct input type with STO sub-function	DeviceNet [®] direct input type	IO-Link direct input type	IO-Link direct input type with STO sub-function	CC-Link direct input type
Туре											1
Series	JXC51 JXC61	JXCE1	JXCEF	JXC91	JXC9F	JXCP1	JXCPF	JXCD1	JXCL1	JXCLF	JXCM1
Features	Parallel I/O	EtherCAT direct input	EtherCAT direct input with STO sub-function	EtherNet/IP™ direct input	EtherNet/IP™ direct input with STO sub-function	PROFINET direct input	PROFINET direct input with STO sub-function	DeviceNet [®] direct input	IO-Link direct input	IO-Link direct input with STO sub-function	CC-Link direct input
Compatible motor	Battery-less absolute (Step motor 24 VDC)										
Max. number of	C4 points										
step data	o4 points										
Power supply voltage		24 VDC									
Reference page	1017					10	63				

- *1 Pushing force accuracy is LER50: ±20% (F.S.).
- *2 The angular acceleration, angular deceleration, and angular speed may fluctuate due to variations in the moment of inertia.
- Refer to the "Moment of Inertia-Angular Acceleration/ Deceleration, Effective Torque-Angular Speed" graphs on page 773 for confirmation.
- *3 The speed and force may change depending on the cable length, load, and mounting conditions. Furthermore, if the cable length exceeds 5 m, then it will decrease by up to 10%for each 5 m. (At 15 m: Reduced by up to 20%)
- *4 A reference value for correcting errors in reciprocal operation *5 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz. The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
- *6 Indicates the max. power during operation (including the controller)

This value can be used for the selection of the power supply.

Specifications

Battery-less Absolute (Step Motor 24 VDC)

Model		LER 50EK	LER 50EJ				
	Rotati	on angle [°]		320			
	Lead [°]		7.5	12		
	Max. rotating torque [N·m]			10	6.6		
	Max. pu	shing torque 40) to 50% [N⋅m]*1 *3	4.0 to 5.0	2.6 to 3.3		
	Max. m	noment of ine	rtia [kg⋅m²]*2 *3	0.13	0.05		
e	Angul	ar speed [°/s	5] * ^{2 *3}	20 to 280	30 to 420		
ţ	Pushi	ng speed [°/	s]	20	30		
sic	Max. ang	ular acceleration	/deceleration [°/s²]*2	30	00		
Ba	Deald		Basic type	±0	.2		
su	Баскі	asn [*]	High-precision type	±0	.1		
ltio	Positi	oning	Basic type	±0.	05		
fica	repea	tability [°]	High-precision type	±0.	03		
eci	Last	nation [0]*4	Basic type	0.3 0	r less		
ds.	LOSU		High-precision type	0.2 0	r less		
ato	Impact/Vibration resistance [m/s ²]*5			150	/30		
ctu	Actuation type			Special worm gear + Belt drive			
¥	Max. operating frequency [c.p.m]			60			
	Operating temp. range [°C]			5 to 40			
	Operating humidity range [%RH]			90 or less (No condensation)			
	Enclosure			IP	IP20		
	Woigh	t [ka]	Basic type	2.2			
	weigi	it [kg]	High-precision type	2.4			
	-2/		-2/	180			
e	Rotati	on angle [°]	arm (1 pc.)				
ţ			-3/ arm (2 pcs.)	9	0		
per	Repea	tability at the	e end [°]/	0+	01		
top	with ex	cternal stopp	er		.01		
als	Exterr	al stopper s	etting range [°]	±	2		
ern		-2/external	Basic type	2.	5		
X	Weight	arm (1 pc.)	type	2.	7		
	[ĸg]	-3/external	Basic type	2.6			
		arm (1 pc.)	type	2.8			
tion	Motor	size			42		
cifica	Motor	type		Battery-less absolute	(Step motor 24 VDC)		
spec	Encod	ler		Battery-les	s absolute		
etric	Power	supply volt	age [V]	24 VD0	24 VDC ±10%		
щ Ш	품 Power [W]*6			Max. power 57			

Table Rotation Angle Range

*1 This is the range within which the table can move when it returns to origin. Make sure that workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.

*2 Position after returning to origin. The position varies depending on whether there is an external stopper.

*3 [] for when the direction of return to origin has changed

[®] 781

Construction

Basic type

Component Parts

		NA 1 1 1	
NO.	Description	Material	Note
1	Body	Aluminum alloy	Anodized
2	Side plate A	Aluminum alloy	Anodized
3	Side plate B	Aluminum alloy	Anodized
4	Worm screw	Stainless steel	Heat treatment + Special treatment
5	Worm wheel	Stainless steel	Heat treatment + Special treatment
6	Bearing cover	Aluminum alloy	Anodized
7	Table	Aluminum alloy	
8	Joint	Stainless steel	
9	Bearing holder	Alloy steel	
10	Bearing stopper	Alloy steel	
11	Origin bolt	Carbon steel	
12	Pulley A	Aluminum alloy	
13	Pulley B	Aluminum alloy	
14	Grommet	NBR	
15	Motor plate	Carbon steel	
16	Basic type Deep groove ball bearing		
	High- Special ball precision type bearing		
17	Deep groove ball bearing	—	
18	Deep groove ball bearing	—	
19	Deep groove ball bearing	—	
20	Belt	—	
21	Battery-less absolute (Step motor 24 VDC)	_	

External stopper type

High-precision type

Component Parts

No.	Description	Material	Note	
22	Table	Aluminum alloy	Anodized	
23	Arm	Carbon steel	Heat treatment + Electroless nickel treated	
24	Holder	Aluminum alloy	Anodized	
25	Adjuster bolt	Carbon steel	Heat treatment + Chromating	

Battery-less Absolute (Step Motor 24 VDC)

LER Series

Dimensions

SMC

Be sure to read this before handling the products. Refer to page 1351 for safety instructions and pages 1352 to 1357 for electric actuator precautions.

Handling

≜Caution

1. Absolute encoder ID mismatch error at the first connection

In the following cases, an "ID mismatch error" alarm occurs after the power is turned ON. Perform a return to origin operation after resetting the alarm before use.

- \cdot When an electric actuator is connected and the power is turned ON for the first time after purchase*1
- · When the actuator or motor is replaced
- · When the controller is replaced
- *1 If you have purchased an electric actuator and controller with the set part number, the pairing may have already been completed and the alarm may not be generated.

"ID mismatch error"

Operation is enabled by matching the encoder ID on the electric actuator side with the ID registered in the controller. This alarm occurs when the encoder ID is different from the registered contents of the controller. By resetting this alarm, the encoder ID is registered (paired) to the controller again.

When a controller is changed after pairing is completed				
	Encoder ID no. (* Numbers below are examples.)			
Actuator	17623	17623	17623	17623
Controller	17623	17699	17699	17623
ID mismatch error occurred?	No	Yes	Error reset \Rightarrow No	

2. In environments where strong magnetic fields are present, use may be limited.

A magnetic sensor is used in the encoder. Therefore, if the actuator motor is used in an environment where strong magnetic fields are present, malfunction or failure may occur. Do not expose the actuator motor to magnetic fields with a magnetic flux density of 1 mT or more.

When installing an electric actuator and an air cylinder with an auto switch (ex. CDQ2 series) or multiple electric actuators side by side, maintain a space of 40 mm or more around the motor. Refer to the construction drawing of the actuator motor.

3. The connector size of the motor cable is different from that of the electric actuator with an incremental encoder.

The motor cable connector of an electric actuator with a battery-less absolute encoder is different from that of an electric actuator with an incremental encoder. As the connector cover dimensions are different, take the dimensions below into consideration during the design process.

Battery-less absolute encoder connector cover dimensions