Thermo-con Air-cooled Water-cooled

HEC Series

Can precisely control the temperature of a heat source or process fluid.

Precisely control the temperature of the circulating fluid by using the Peltier device. Generates little vibration, and is refrigerant-free and environmentally friendly.

Can control the temperature of the heat source by using the external temperature sensor (sold separately). (Automatically adjusts to the effects of ambient temperature.)

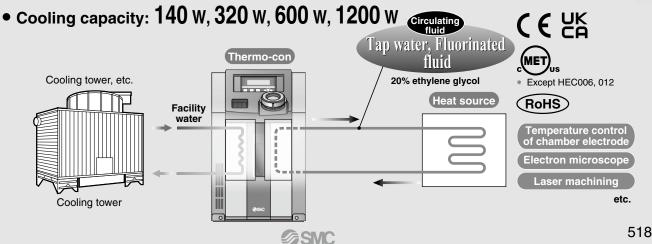
Temperature range setting:

10°C to 60°C


Temperature stability:

±0.01°C to 0.03°C

Air-cooled HEC-A Series

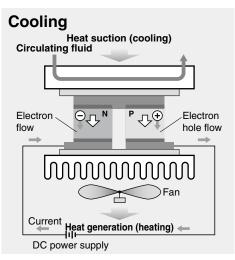


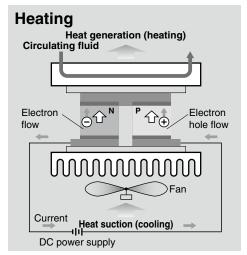
Air-cooled: Can be used in the environments with no cooling equipment.

Water-cooled **HEC-W** Series

• Water-cooled: Can be used in the environments with facility water equipment.

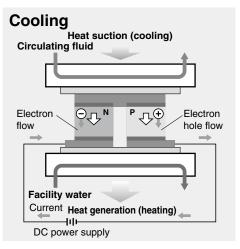
- Power supply: Applicable to 100 V to 240 V
- (Air-cooled/HEC-A series, Water-cooled/HEC001-W, HEC003-W)
- Suitable to fluorinated fluids (Fluorinert[™] FC-3283, GALDEN® HT135) (Water-cooled/**HEC006-W**, **HEC012-W**)
- Compatible with ethylene glycol 20% (Water-cooled/HEC001-W, HEC003-W)

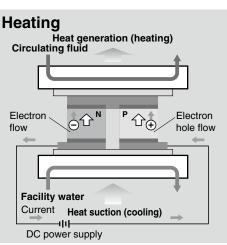

Learning Control Function (Temp. control by external temperature sensor)


This function adjusts the fluid temperature to the set value with an automatic offset setting. Set the external temperature sensor at the circulating fluid inlet located just in front of the heat source, which allows the Thermo-con to sample the fluid temperature. This function is effective when automatically adjusting for heat exhaust from piping, etc. If the external temperature sensor is installed directly on the heat source, the learning control function may not work property due to large heat volume or large temperature difference. Be sure to install the sensor at the circulating fluid inlet.

Principle of Peltier Device (Thermo-module)

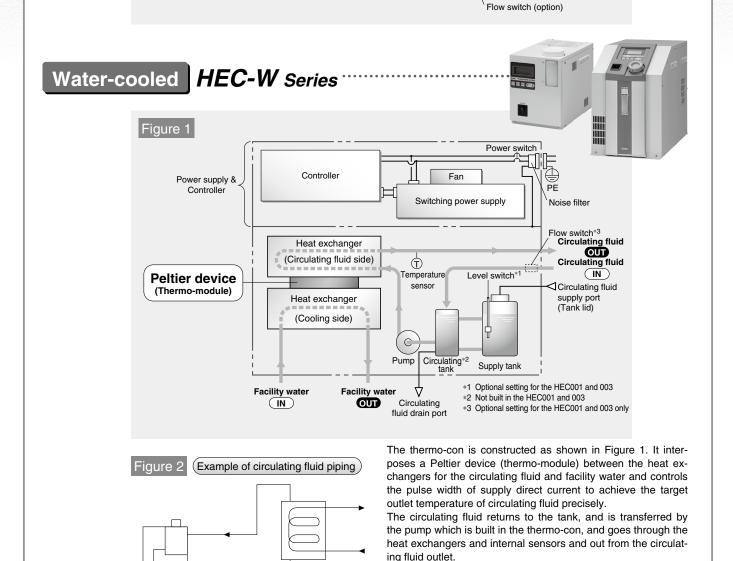
A Peltier device (thermo-module) is a plate type element, inside which P-type semiconductors and N-type semiconductors are located alternately. If direct current is supplied to the Peltier device (thermo-module), heat is transferred inside the device, and one face generates heat and increases temperature while the other face absorbs heat and decreases temperature. Therefore, changing the direction of the current supplied to the Peltier device (thermo-module) can achieve heating and cooling operation. This method has a fast response and can shift quickly between heating and cooling, so temperature can be controlled very precisely.





Water-cooled

HEC-W
Series


Construction and Principles

HEC-A Series Air-cooled Figure 1 Noise filter Power switch Controller Fan Power supply 8 Controller Switching power supply Circulating fluid Heat exchanger OUT (Circulating fluid side) Circulating fluid 1 (IN) Peltier device Temperature Circulating fluid sensor (Thermo-module) supply port Heat exchanger (Cooling side) Level switch Pump Circulating fluid Fan

drain port

Figure 2 shows an example of circulating fluid piping. The circu-

lating fluid is transferred at a constant temperature by the

Target of

control

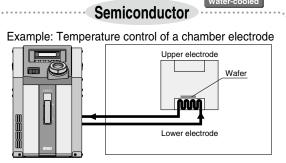
Thermo-con

temperature

When to Use Air-cooled and Water-cooled Thermo-con

Both air-cooled and water-cooled thermo-cons are available. Select a proper thermo-con by referring to the following.

Air-cooled

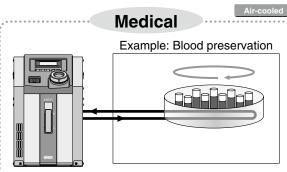

- · No facility water equipment
- Frequent piping changes

- Can install the unit easily without facility water equipment.
 - Can reduce the piping installation labor since facility water piping is not required.

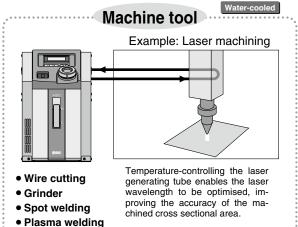
Water-cooled

- Need to avoid effects of ambient temperature.
- Want to reduce the installation space.
- Since the unit is water-cooled, the ambient temperature will have little effect.
- Can reduce the space since the unit is compact.

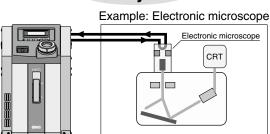
Application Examples



- Etching equipment
- Coating equipment
- Spatter equipment
- Dicing equipment
- Cleaning equipment


Laser machining,

etc.


• Tester, etc.

- X-ray diagnostic instrument
- Blood preservation equipment

Analysis

- Electron microscope
- X-ray analytical instrument
- Prevents the distortion caused by the heat generated by the electronic gun in an electronic micro-
- Gas chromatography
- Sugar level analytical instrument, etc.

Bonding of DVD including next generation

Cooling of semiconductor laser

Temperature control of die-cast mold

CONTENTS

HEC Series

Model Selection

Thermo-con

Air-cooled HEC-A Series

Cooling Capacity/Heating Capacity/	
Pump Capacity (Thermo-con Outlet) ······	Page 526
Parts Description ·····	Page 527
Dimensions ·····	
Connectors ·····	Page 530
Alarm/Maintenance·····	Page 531
Options ·····	Page 532

Specific Product Precautions Page 533

How to Order/Specifications Page 525

Thermo-con Water-cooled HEC-W Series

	How to Order/Specifications ······	Page	537
	Cooling Capacity	Page	539
	Heating Capacity ·····	Page	540
	Pump Capacity (Thermo-con Outlet)/		
	Pressure Loss in Facility Water Circuit ······	Page	541
	Parts Description ·····	Page	542
	Dimensions	Page	543
	Connectors ·····	Page	546
	Alarm/Maintenance·····	Page	547
	Options ·····	Page	548
Sp	ecific Product Precautions	Page	549

HEC Series Model Selection

Guide to Model Selection

1. What radiation method will be used?

Without a cooling tower Air-cooled HEC-A series With a cooling tower Water-cooled HEC-W series

When to Use Air-cooled and Water-cooled Thermo-con

<Air-cooled>

- No facility water equipment → Can install the unit easily without facility water equipment.
- Frequent piping changes → Can reduce the piping installation labor since facility water piping is not required.

<Water-cooled>

- Need to avoid effects of ambient temperature. → Since the unit is water-cooled, the ambient temperature will have little effect.
- Want to reduce installation space. → Can reduce the space since the unit is compact.

2. How much is the temperature in degrees centigrade for the circulating fluid?

Temperature range which can be set with the thermo-con: 10 to 60°C

If a lower temperature (down to -20°C) or higher temperature (up to 90°C) than this range is necessary, select the thermo-chiller HRZ series.

3. What kind of the circulating fluids will be used?

Circulating fluids that can be used in the thermo-con

Model	Tap water	Fluorinert™ FC-3238 GALDEN® HT135	20% ethylene glycol
HEC001-W, HEC003-W	0	Option	0
HEC006-W, HEC012-W	0	0	0
HEC002-A, HEC006-A	0	×	0

○ : Usable X : Unusable

4. How much cooling capacity required?

Allows a safety factor of 20% over the capacity that is actually required, taking into account the changes in the operating conditions. If a larger capacity than this thermo-con is necessary, select the thermo-cooler HRG series or thermo-chiller HRZ series.

Example 1 When the heat generation amount in the user's equipment is known.

Heat generation amount: 400 W

Cooling capacity = Considering a safety factor of 20%, **400 x 1.2 = |480 W|**

Guide to Model Selection

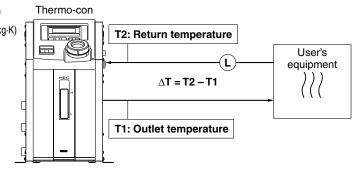
Example 2 When the heat generation amount in the user's equipment is not known.

Obtain the temperature difference between inlet and outlet by circulating the fluid inside the user's equipment.

 $\label{eq:continuity} \begin{array}{lll} \mbox{Heat generation amount } \textbf{Q} & : \mbox{Unknown} \\ \mbox{Circulating fluid temperature difference } \Delta \textbf{T} \mbox{ (= } \textbf{T2} - \textbf{T1)} \mbox{ : } 0.8^{\circ}\mbox{C} \mbox{ (0.8 K)} \\ \mbox{Circulating fluid outlet temperature } \textbf{T1} & : 25^{\circ}\mbox{C} \mbox{ (298.15 K)} \\ \mbox{Circulating fluid return temperature } \textbf{T2} & : 25.8^{\circ}\mbox{C} \mbox{ (298.95 K)} \\ \end{array}$

Circulating fluid flow rate L : 3 L/min
Circulating fluid : Water

Density γ : 1 x 10³ kg/m³ Specific heat **C**: 4.2 x 10³ J/(kg·K)


$$Q = \frac{\Delta T \times L \times \gamma \times C}{60 \times 1000}$$

$$= \frac{0.8 \times 3 \times 1 \times 10^3 \times 4.2 \times 10^3}{60 \times 1000}$$

= 167 W

Cooling capacity = Considering a safety factor of 20%,

167 W x 1.2 = 200 W

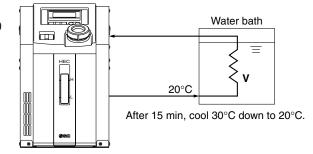
Example 3 When cooling the object below a certain temperature in certain period of time.

Cooled substance total volume V : 20 L
Cooling time h : 15 min

Cooling temperature difference ΔT : Temperature difference: 10°C (10 K). Cool from 30°C (303 K) to 20°C (293 K).

Circulating fluid : Tap water

Density γ: 1 x 10³ kg/m³


Specific heat C: 4.2 x 103 J/(kg·K)

* Refer to the information shown below for the typical physical property values by circulating fluid.

$$Q = \frac{\Delta T \times V \times \gamma \times C}{h \times 60 \times 1000}$$
$$= \frac{10 \times 20 \times 1 \times 10^{3} \times 4.2 \times 10^{3}}{15 \times 60 \times 1000}$$

Cooling capacity = Considering a safety factor of 20%,

933 W x 1.2 = 1120 W

Precautions on Model Selection

The flow rate of the circulating fluid depends on the pressure loss of the user's equipment and the length, diameter and resistance created by bends in the circulating fluid piping, etc. Check if the required flow rate of circulating fluid can be obtained before selecting.

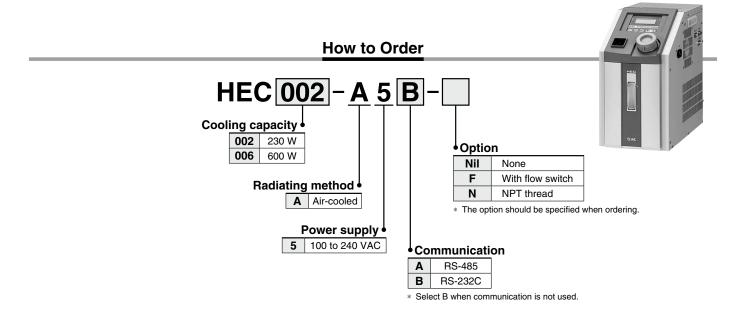
Circulating Fluid Typical Physical Property Values

Fluorinated Fluids

= 933 W

Physical property	Density γ	Specific heat C
Temperature	[kg/m³]	[J/(kg · K)]
−10°C	1.87 x 10 ³	0.87 x 10 ³
20°C	1.80 x 10 ³	0.96 x 10 ³
50°C	1.74 x 10 ³	1.05 x 10 ³
80°C	1.67 x 10 ³	1.14 x 10 ³

Water


Peltier-Type Chiller Thermo-con (Air-cooled) (MET).

HEC-A Series

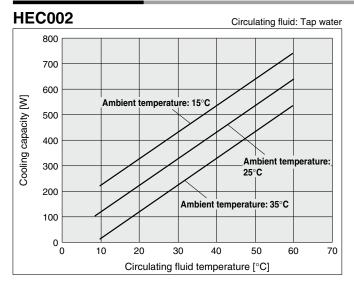
RoHS

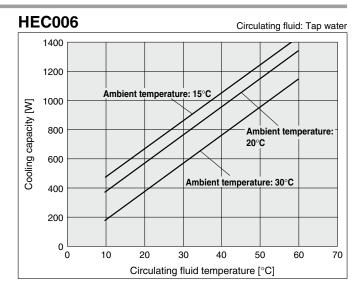
Specifications (For details, please refer to our "Product Specifications" information.)

	Mod	del	HEC002-A5A	HEC002-A5B	HEC006-A5A	HEC006-A5B	
Cooling method		ı	Thermoelectric device (Thermo-module)				
Ra	adiating metho	od	Forced air cooling				
Co	ontrol method			Cooling/Heating auto	matic shift PID control		
Ar	nbient temper	rature/humidity	10 to 35°C, 35 to 80%RH (no condensation)				
	Circulating fl	luid		Tap water, 20% ethylene	e glycol aqueous solution		
	Operating ten	nperature range		10.0 to 60.0°C (r	no condensation)		
system	Cooling capa	acity	230	W*1	600	W*2	
	Heating capa	acity	600	W*1	900	W*2	
fluid	Temperature	stability*3		±0.01 to ±0.03°C			
ingf	Pump capaci	ity	Refer to performance chart.		rmance chart.		
Circulating	Tank capacit	ty	Approx. 1.2 L				
Circ	Port size	IN/OUT	Rc	Rc1/4		Rc3/8	
_		Drain	Rc1/4 (with plug)				
	Fluid contact	act material Stainless steel 303, Sta		Stainless steel 304, EPDM, Ceramics, PPS glass 30%, Carbon, PE, Polyurethane			
Ĕ	Power supply	у		Single-phase 100 to 24	0 VAC ±10%, 50/60 Hz	50/60 Hz	
system	Overcurrent	protector		15	5 A		
	Current cons	sumption	8 A (100 VAC) to 3 A (240 VAC)		10 A (100 VAC) to 4 A (240 VAC)		
Current consumption Alarm Communications				Refer to ala	rm function.		
쯢	Communicat	ions	RS-485	RS-232C	RS-485	RS-232C	
W	eight		Approx. 17.5 kg (including foot for fixing) Approx. 27.5 kg (including foot for fixing)		luding foot for fixing)		
Ac	cessories			Power cable, Foot for fixing			
Safety standards CE/UKCA marking, UL (NRTL) standards							

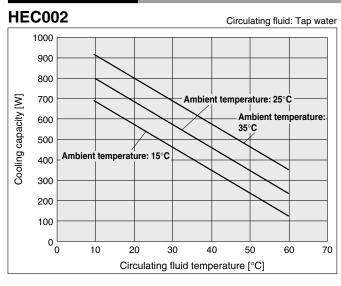
^{*1} Conditions: Set temperature 25°C, Ambient temperature 25°C, Circulating flow rate 3 L/min

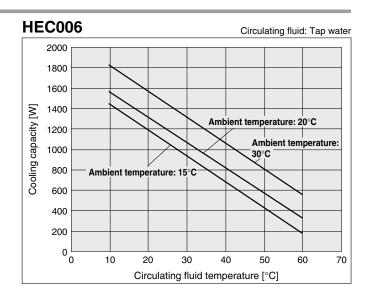
^{*3} The indicated values are with a stable load without turbulence in the operating conditions. It may be out of this range in some other operating conditions.

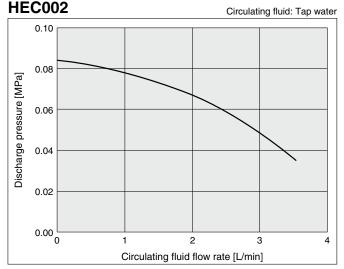


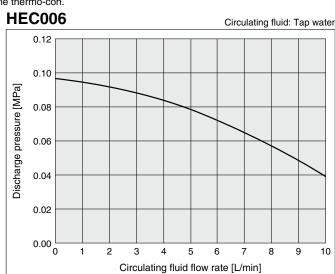

^{*2} Conditions: Set temperature 25°C, Ambient temperature 20°C, Circulating flow rate 8 L/min

Peltier-Type Chiller Thermo-con (Air-cooled) HEC-A Series


The values shown on the performance chart are not guaranteed, but typical. Allow margins for safety when selecting the model.

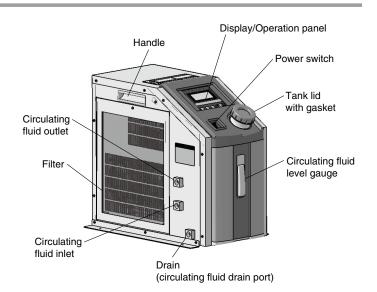

Cooling Capacity

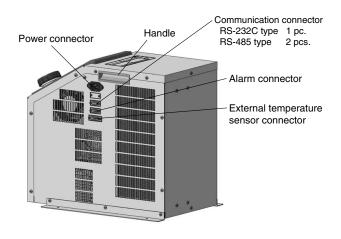

Heating Capacity

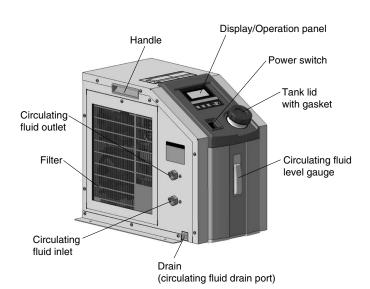


Pump Capacity (Thermo-con Outlet)

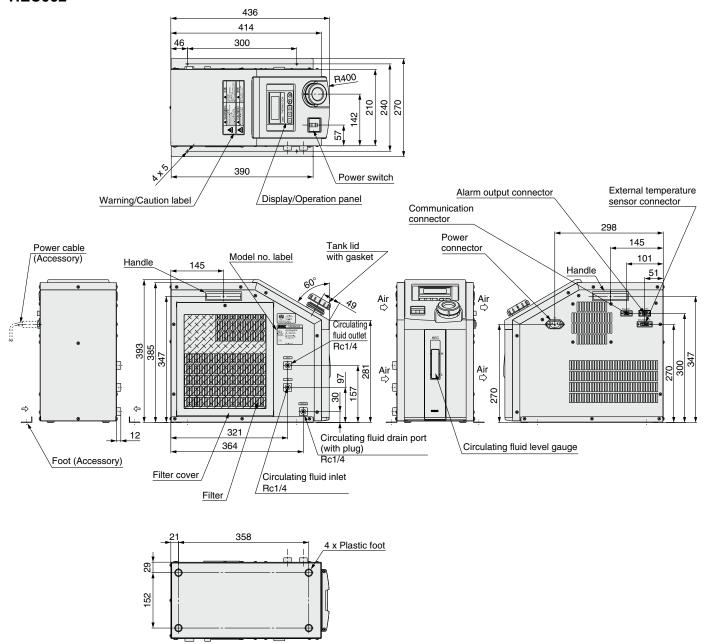
The pressure on the y-axis shows the discharge pressure of circulating fluid in the thermo-con.

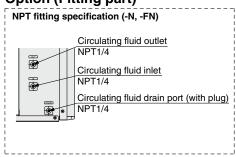



HEC-A Series


Parts Description

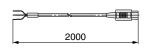
Handle Power connector Handle Power connector Handle RS-232C type 1 pc. RS-485 type 2 pcs. Alarm connector External temperature sensor connector


HEC006



Dimensions

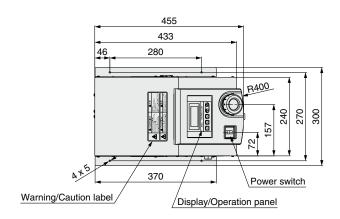
HEC002

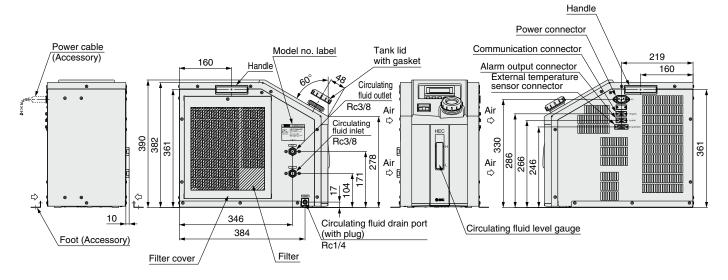

Option (Fitting part)

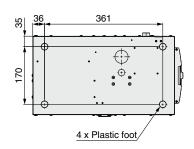
Power Cable (Accessory)

Connector: IEC 60320 C13 or equivalent Cable: 14AWG, O.D. ø8.4

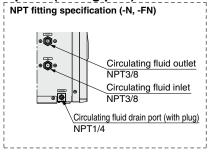
Wire color	Contents
Black	100 to 240 VAC
Black	100 to 240 VAC
Green/Yellow	PE

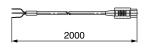





HEC-A Series

Dimensions

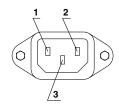

HEC006



Power Cable (Accessory)

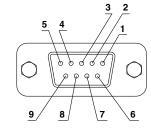
Connector: IEC 60320 C13 or equivalent

Cable: 14AWG, O.D. ø8.4


Wire color	Contents
Black	100 to 240 VAC
Black	100 to 240 VAC
Green/Yellow	PE

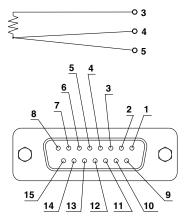
Connectors

1. Power connector (AC) IEC 60320 C14 or equivalent

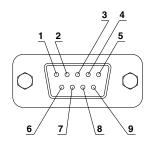

	Pin No.	Contents	
	1	100 to 240 VAC	
2 100 to 240 VA		100 to 240 VAC	
	3	PE	

2. Communication connector (RS-232C or RS-485) D-sub 9 pin (socket)

Holding screw: M2.6


Din No	Signal contents		
Pin No.	RS-232C	RS-485	
1	Unused	BUS+	
2	RD	BUS-	
3	SD	Unused	
4	Unused	Unused	
5	SG	SG	
6-9	Unused	Unused	

3. External sensor connector (EXT.SENSOR) D-sub 15 pin (socket)


D-Sub I	o pini (s	ockei
Holding	screw:	M2.6

Pin No.	Signal contents	
1-2	Unused	
3	Terminal A of resistance temperature detector	
4	Terminal B of resistance temperature detector	
5	Terminal B of resistance temperature detector	
6-14	Unused	
15	FG	

4. Alarm output connector (ALARM) D-sub 9 pin (pin) Holding screw: M2.6

Pin No.	Signal contents	
1	Contact a for output cut-off alarm (open when alarm occurs)	
2	Common for output cut-off alarm	
3	Contact b for output cut-off alarm (closed when alarm occurs)	
4-5	Unused	
6	Contact a for upper/lower temp. limit alarm (open when alarm occurs)	
7	7 Common for upper/lower temp. limit alarm	
8	Contact b for upper/lower temp. limit alarm (closed when alarm occurs)	
9	Unused	

HEC-A Series

Alarm

This unit is equipped as standard with a function allowing 15 kinds of alarms to display on the LCD and can be read out by serial communication. Also, it can generate relay output for upper/lower temperature limit alarm and output cut-off alarm.

Alarm

Alarm code	Alarm description	Operation status	Main reason
WRN	Upper/Lower temp. limit alarm	Continue	The temperature has exceeded the upper or lower limit of the target temperature.
ERR00	CPU hung-up	Stop	The CPU has crashed due to noise, etc.
ERR01	CPU check error	Stop	The contents of the CPU cannot be read out correctly when the power supply is turned on.
ERR03	Back-up data error	Stop	The contents of the back-up data cannot be read out correctly when the power supply is turned on.
ERR04	EEPROM writing error	Stop	The data cannot be written to EEPROM.
ERR11	DC power supply failure	Stop	The DC power supply has failed (due to fan stop or abnormal high temperature) or the thermo-module has been short-circuited.
ERR12	Internal temp. sensor high temp. error	Stop	The internal temperature sensor has exceeded the upper limit of cut-off temperature.
ERR13	Internal temp. sensor low temp. error	Stop	The internal temperature sensor has exceeded the lower limit of cut-off temperature.
ERR14	Thermostat alarm	Stop	The thermostat has been activated due to filter clog or fan/pump failure, etc.
ERR15	Abnormal output alarm	Continue	The temperature cannot be changed even at 100% output due to overload or disconnection of the thermo-module.
ERR16	Low flow rate alarm (option)	Stop	The flow rate of the circulating fluid has dropped.
ERR17	Internal temp. sensor disconnection alarm	Stop	The internal temperature sensor has been disconnected or short-circuited.
ERR18	External temp. sensor disconnection alarm	Continue	The external temperature sensor has been disconnected or short-circuited. (Only detected when in learning control or external tune control)
ERR19	Abnormal auto tuning alarm	Stop	Auto tuning has not been completed within 20 minutes.
ERR20	Low fluid level alarm	Stop	The amount of circulating fluid in the tank has dropped.

Maintenance

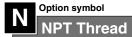
Maintenance of this unit is performed only in the form of return to and repair at SMC's site. As a rule, SMC will not conduct on-site maintenance. Separately, the following parts have a limited life and need to be replaced before the life ends.

Parts Life Expectation

Description	Expected life	Possible failure
Pump	3 to 5 years	The bearing is worn so the pump fails to transfer the circulating fluid, which results in temperature control failure.
Fan	5 to 10 years	The bearing uses up lubrication and makes the fan unable to supply enough air, which deteriorates the cooling and heating capacity.
DC power supply	5 to 10 years	The capacity of the electrolytic condenser decreases, and causes abnormal voltage which results in DC power supply failure and stops the thermo-con.
Display panel	50,000 hours (approx. 5 years)	The display turns off when the backlight of the LCD reaches the end of its life.

HEC-A Series Options

* Options have to be selected when ordering the thermo-con. It is not possible to add them after purchasing the unit.



This is an ON/OFF switch detecting low levels of the circulating fluid.

When the fluid volume is 1 L/min. or less, "ERR16" is displayed and the thermo-con stops. This switch is installed between the circulating fluid inlet and the tank, and built into the thermo-con. Refer to page 520.

Type	Applicable model
Air-	HEC002-A5□-F
cooled	HEC006-A5□-F

The connection parts of circulating fluid piping, facility water piping and circulating fluid drain port are NPT thread type.

Туре	Applicable model
Air-	HEC002-A5□-N
cooled	HEC006-A5□-N

HEC-A Series Specific Product Precautions 1

Be sure to read this before handling the products. Refer to page 605 for safety instructions and pages 606 to 609 for temperature control equipment precautions.

Design

- 1. This catalog shows the specifications of the Thermo-con.
 - Check detailed specifications in the separate "Product Specifications", and evaluate the compatibility of the thermo-con with user's system.
 - Although a protection circuit as a single unit is installed, the user is requested to carry out a safety design for the whole system.

Handling

⚠ Warning

1. Thoroughly read the operation manual.

Read the operation manual completely before operation, and keep the manual where it can be referred to as necessary.

2. If the set temperature is repeatedly changed by 10°C or more, the thermo-con may fail in short periods of time.

Operating Environment/Storage Environment

⚠ Warning

1. Keep within the specified ambient temperature and humidity range.

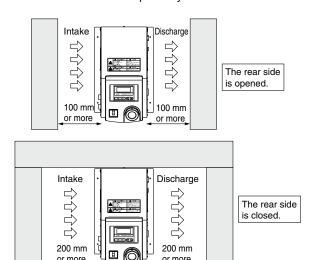
Also, if the set temperature is too low, condensation may form on the inside of the thermo-con or the surface of piping even within the specified ambient temperature range. Dew condensation can cause failure, and so must be avoided by considering operating conditions.

2. The thermo-con is not designed for clean room usage.

It generates dust from the pump inside the unit and the cooling fan

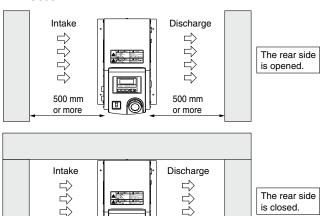
3. Low molecular siloxane can damage the contact of the relay.

Use the thermo-con in a place free from low molecular siloxane.


Radiation Air

⚠ Caution

- 1. The inlet for radiation air must not be exposed to particles and dust as far as possible.
- 2. Do not let the inlet and outlet for radiation air get closed.


<HEC002>

If radiation is prevented, the set temperature may not be achieved depending on the value of the set temperature and the load. Keep a space of 100 mm for opened rear side or 200 mm for closed rear side respectively.

<HEC006>

500 mm

* The space must be 500 mm or more. Be sure that the ambient temperature is within the specification range.

500 mm

HEC-A Series Specific Product Precautions 2

Be sure to read this before handling the products. Refer to page 605 for safety instructions and pages 606 to 609 for temperature control equipment precautions.

Radiation Air

If more than one thermo-con is used, consider their arrangement so that the downstream sides of the thermo-cons suck radiation air from the upstream sides.

Otherwise, the performance at the downstream sides may deteriorate. Also, the set temperature may not be achieved depending on the value of the set temperature and the load. In such a case, take countermeasures such as changing the direction of the thermo-cons to prevent the deterioration of performance.

- 4. If dust adheres to the filter, remove dust with a vacuum cleaner or a dry cloth.
- 5. Do not operate without the filter.

Otherwise, dust may accumulate on the heat sink and electrical components, causing abnormal heating.

Circulating Fluid

 Use tap water or fluid which will not damage the wetted material.

(Stainless steel 303, Stainless steel 304, EPDM, Polypropylene, PE, PPE, Ceramics, Polyurethane)

2. Deionized water (with an electric conductivity of approx. 1 μ S/cm) can be used, but may lose its electric conductivity.

Also, if a facility supplying deionized water is used, the thermocon may be damaged by static electricity.

3. If deionized water is used, bacteria and algae may grow within a short period.

If the thermo-con is operated with bacteria and algae present, its cooling capacity or the capacity of the pump may deteriorate. Replace all deionized water regularly according to the conditions (once a month as a guide).

- 4. If using a fluid other than water, please contact SMC beforehand.
- 5. The maximum operating pressure of circulating fluid circuit is 0.1 MPa.

If this pressure is exceeded, leakage from the tank in the thermo-con may result.

6. Select a pipe with a length and diameter which allows a flow rate of 1 L/min or more (HEC002) or 3 L/min or more (HEC006) for the circulating fluid.

If the flow rate is less than these values, the thermo-con will not be able to provide precise control, and the repeated cooling and heating operations may cause it to fail.

A magnet driven pump is used as the circulating pump.

Fluids which contain metal powders such as iron powder cannot be used.

8. The thermo-con must not be operated without circulating fluid.

The pump can break due to idling.

Circulating Fluid

∧ Caution

- If the tank lid is opened after the supply of circulating fluid, the circulating fluid may spill out depending on the condition of the external piping.
- If an external tank is used, the circulating fluid may spill out from the internal tank lid depending on where the external tank is installed.

Check that the internal tank has no leakage if using an external tank.

11. If there is a point where fluid is released to atmosphere externally (tank or piping), minimize the piping resistance at the circulating fluid return side.

If the piping resistance is too large, the piping may be crushed or the built-in circulator tank may be deformed or cracked because the pressure in the piping for return will become negative. The built-in circulator tank is made of resin (PE). Therefore, the tank may be crushed if the pressure is negative. Special attention must be paid if the flow rate of the circulating fluid is high. To avoid a negative pressure of -0.02 MPa or below, the piping for return should be as thick and short as possible to minimize the piping resistance. It is also effective to restrict the flow rate of circulating fluid or remove the gasket of the internal tank for the release to atmosphere.

12. Fluorinated fluid falls outside of the specifications.

If it is used in the thermo-con, static electricity will be generated by the flow of fluid. This static electricity may be discharged to the board of the thermo-con, causing damage, operation failure, or loss of data such as set temperatures. Also, as the specific gravity of the fluorinated fluid is 1.5 to 1.8 times that of water, the pump will be overloaded, which also causes fluorinated fluid to fall outside the specifications. Therefore, if fluorinated fluid is to be used, please contact SMC and we will introduce you to a suitable special product (water-cooled type).

- 13. Avoid operation with cavitation or bubbles due to low fluid level in the tank. This may shorten the pump life.
- 14. If tap water is used, it should satisfy the quality standards shown below.

Tap Water (as a Circulating Fluid) Quality Standards

The Japan Refrigeration and Air Conditioning Industry Association JRA GL-02-1994 "Cooling water system – Circulating type – Supply water"

				Influence	
	Item	Unit	Standard value	Corrosion	Scale generation
	pH (at 25°C)	_	6.0 to 8.0	0	0
l _	Electric conductivity (25°C)	[µS/cm]	100*1 to 300*1	0	0
Standard item	Chloride ion (Cl ⁻)	[mg/L]	50 or less	0	
5	Sulfuric acid ion (SO ₄ ²⁻)	[mg/L]	50 or less	0	
nda	Acid consumption amount (at pH4.8)	[mg/L]	50 or less		0
Sta	Total hardness	[mg/L]	70 or less		0
"	Calcium hardness (CaCO ₃)	[mg/L]	50 or less		0
	Ionic state silica (SiO ₂)	[mg/L]	30 or less		0
_	Iron (Fe)	[mg/L]	0.3 or less	0	0
ite	Copper (Cu)	[mg/L]	0.1 or less	0	
Se Se	Sulfide ion (S ₂ ⁻)	[mg/L]	Should not be detected.	0	
len	Ammonium ion (NH ₄ +)	[mg/L]	0.1 or less	0	
Reference item	Residual chlorine (CI)	[mg/L]	0.3 or less	0	
"	Free carbon (CO ₂)	[mg/L]	4.0 or less	0	

- *1 In the case of [MΩ·cm], it will be 0.003 to 0.01.
- O: Factors that have an effect on corrosion or scale generation.
- Even if the water quality standards are met, complete prevention of corrosion is not guaranteed.

HEC-A Series Specific Product Precautions 3

Be sure to read this before handling the products. Refer to page 605 for safety instructions and pages 606 to 609 for temperature control equipment precautions.

Communication

⚠ Caution

1. The set value can be written to EEPROM, but only up to approx. 1 million times.

In particular, pay attention to how many of times the writing is performed using the communication function.

Maintenance

⚠ Warning

1. Prevention of electric shocks and fire

Do not operate the switch with wet hands. Also, do not operate the thermo-con when water is present on its exterior surface.

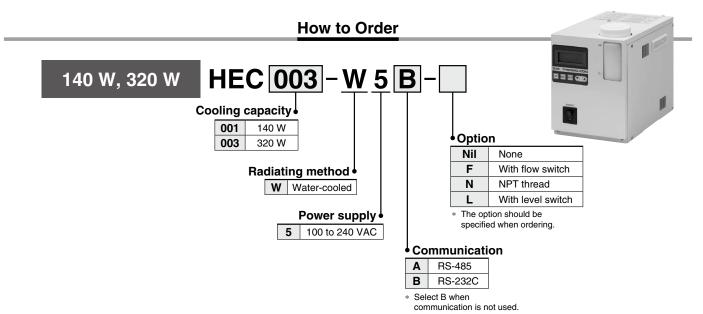
2. Action in the case of error

If any error such as an abnormal sound, smoke, or bad odor occurs, cut off the power at once, and stop supplying and conveying fluid. Please contact SMC or a sales distributor to repair the thermo-con

3. Regular inspection

Check the following items at least once a month. The inspection must be done by an operator who has sufficient knowledge and experience.

- a) Check the displayed contents.
- b) Check the temperature, vibration level, and for abnormal sounds in the body of the thermo-con.
- c) Check the voltage and current of the power supply system.
- d) Check the circulating fluid for leakage, contamination, and the presence of foreign matter. Replace the fluid when necessary.
- e) Check the flow condition and temperature of the radiated air, and the filter.



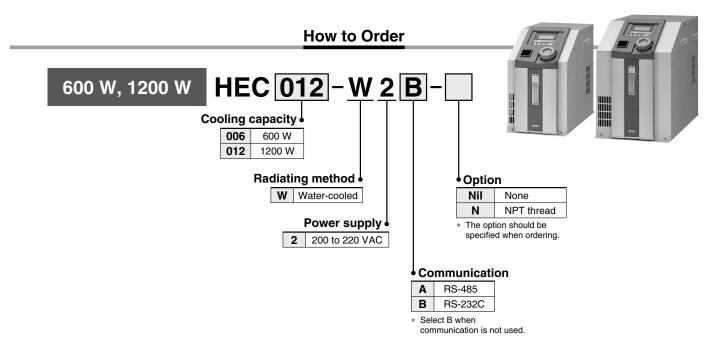
Peltier-Type Chiller Thermo-con (Water-cooled)

RoHS

HEC-W Series

Specifications (For details, please refer to our "Product Specifications" information.)

	Model	HEC001-W5A	HEC001-W5B	HEC003-W5A	HEC003-W5B	
Cooling method		Thermoelectric device (Thermo-module)				
Radiating method		Water-cooled				
Co	entrol method		Cooling/Heating autor	matic shift PID control		
An	bient temperature/humidity		10 to 35°C, 35 to 80%	RH (no condensation)		
	Circulating fluid		Tap water, 20%	ethylene glycol		
E	Operating temp. range	10.0 to 60.0°C (no condensation)				
system	Cooling capacity	140	140 W*1		W*1	
l s p	Heating capacity	400) W *1	770	W*1	
fluid	Temperature stability*2		±0.01 to	0.03°C		
ing	Pump capacity	Refer to performance chart.				
lat	Tank capacity	Approx. 1.2 L				
Circulating	Port size	IN/OUT: Rc3/8 Drain: Rc1/4 (with plug)				
	Fluid contact material	PPE, PP glass 10%, Alumina ceramics, Carbon, EPDM, Stainless steel 303, Stainless steel 304, PE, PP, NBR				
system	Temperature range	10 to 35°C (no condensation)				
sks	Pressure range	Within 1 MPa				
watel	Required flow rate*3	3 to 7 L/min				
Facility water	Port size	IN/OUT: Rc3/8				
Ē	Fluid contact material	uid contact material Stainless steel 304				
E	Power supply		Single-phase 100 to 240 VAC ±10%, 50/60 Hz			
system	Overcurrent protector	10 A				
	Current consumption	3.5 A (100 VAC)	3.5 A (100 VAC) to 1.5 A (240 VAC)		5.5 A (100 VAC) to 2.5 A (240 VAC)	
Electrical	Alarm		Refer to alarm function.			
읍	Communications	RS-485	RS-232C	RS-485	RS-232C	
W	eight	Approx. 12 kg Approx. 13 kg			k. 13 kg	
Ac	cessories	Power cable, Foot for fixing, Splashproof cover				
Sa	fety standards	CE/UKCA marking, UL (NRTL) standards, SEMI				


^{*1} Circulating fluid/Tap water conditions: Circulating fluid set temperature 20°C, Flow rate 5 L/min., Facility water temperature 20°C, Flow rate 5 L/min., Ambient temperature 25°C

^{*3} The flow rate beyond the proper range may deteriorate performance or generate noise, causing the piping to break.

^{*2} The indicated values are with a stable load without turbulence in the operating conditions. It may be out of this range in some other operating conditions.

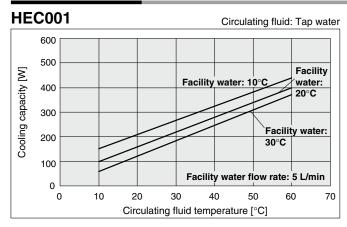
Peltier-Type Chiller Thermo-con (Water-cooled) **HEC-W** Series

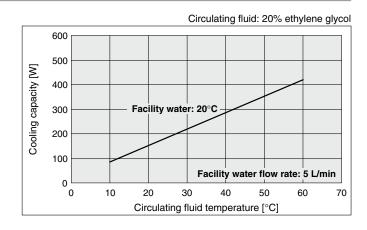
Specifications (For details, please refer to our "Product Specifications" information.)

	Model	HEC006-W2A	HEC006-W2B	HEC012-W2A	HEC012-W2B	
Cooling method		Thermoelectric device (Thermo-module)				
Radiating method		Water-cooled				
C	ontrol method		Cooling/Heating auto	matic shift PID control		
Α	mbient temperature/humidity		10 to 35°C, 35 to 80%	RH (no condensation)		
	Circulating fluid*1	Тар	water, Fluorinated fluid (Fluori	nert™ FC-3283, GALDEN® H	T135)	
	Operating temperature range		10.0 to 60.0°C (ı	no condensation)		
E	Cooling capacity	600 W (Tap water), 400 V	V (Fluorinert [™] FC-3283)*2	1200 W (Tap water), 800	W (Fluorinert [™] FC-3283)*3	
system	Heating capacity	900 W (Tap water), 600 V	V (Fluorinert [™] FC-3283)*2	2200 W (Tap water), 1500	W (Fluorinert [™] FC-3283)*3	
	Temperature stability*4		±0.01 to	0.03°C		
g fluid	Pump capacity		Refer to perfo	rmance chart.		
ating	Tank capacity	Approx. 3 L		Appr	ox. 5 L	
Circulating	Port size	IN/OUT: Rc3/8 Drain: Rc1/4 (with plug)		IN/OUT: Rc3/4 Drain: Rc1/4 (with plug)		
	Fluid contact material	Stainless steel 303, Stainless PPS glass 30%, Carb	steel 304, EPDM, Ceramics, on, PE, Polyurethane		s steel 304, EPDM, Ceramics, ethane, SiC, PPS	
еш	Temperature range	10 to 35°C (no		condensation)		
system	Pressure range	Within :		1 MPa		
Facility water	Required flow rate*5	8 to 15 L/min		10 to 15 L/min		
Ę.	Port size	IN/OUT	IN/OUT: Rc3/8		IN/OUT: Rc1/2	
Fac	Fluid contact material		Stainless steel 303		, Stainless steel 304	
em	Power supply		Single-phase 200 to 22		20 VAC ±10%, 50/60 Hz	
system	Overcurrent protector	10	10 A		15 A	
	Current consumption	5 A		10 A		
Electrical	Alarm	Refer to ala		rm function.		
Ele	Communications	RS-485	RS-232C	RS-485	RS-232C	
W	eight	Approx. 25 kg (including foot for fixing)		Approx. 40 kg (inc	luding foot for fixing)	
A	ccessories	Power cable, Foot for fixing				
S	afety standards	CE/UKCA marking				

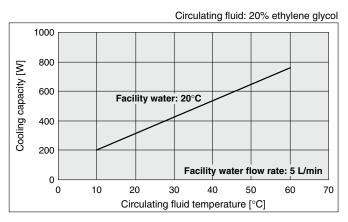
^{*1} GALDEN[®] is a registered trademark, belonging to the Solvay Group or its corresponding owner. Fluorinert™ is a trademark of 3M. Regarding the fluid other than the above, please consult with SMC.
*2 Conditions: Set temperature 25°C, Facility water temperature 20°C, Facility water flow rate 8 L/min, Ambient temperature 25°C.

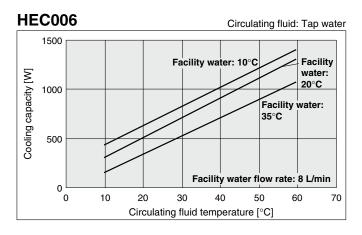
^{*5} The flow rate beyond the proper range may deteriorate performance or generate noise, causing the piping to break

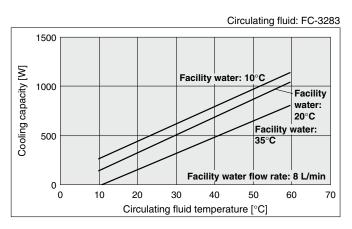

^{*3} Conditions: Set temperature 25°C, Facility water temperature 20°C, Facility water flow rate 10 L/min, Ambient temperature 25°C.

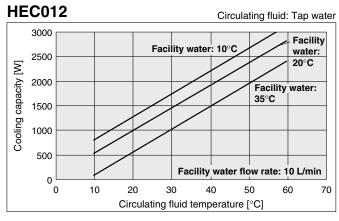

^{*4} The indicated values are with a stable load without turbulence in the operating conditions. It may be out of this range in some other operating conditions.

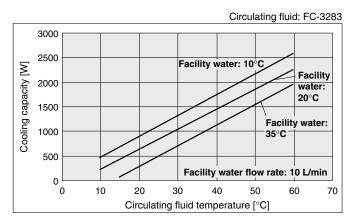
HEC-W Series

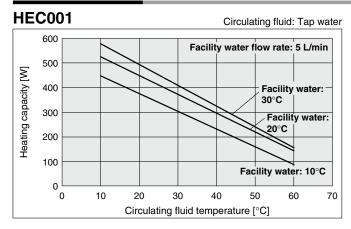

Cooling Capacity

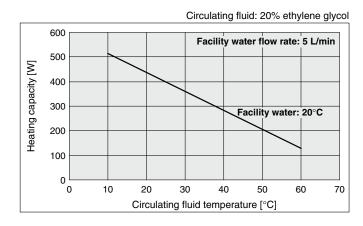

The values shown on the performance chart are not guaranteed, but typical. Allow margins for safety when selecting the model.



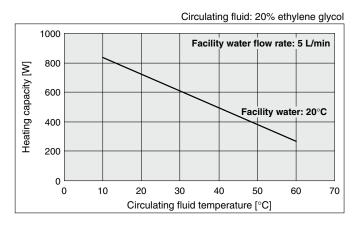


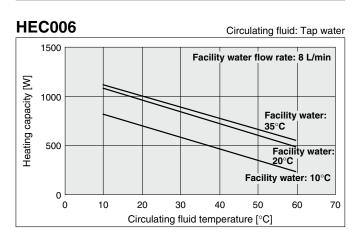

HEC003 Circulating fluid: Tap water 1000 800 Cooling capacity [W] Facility water: 10°C Facility water: 600 20°C Facility water: 400 30°C 200 Facility water flow rate: 5 L/min 0 20 30 40 50 Circulating fluid temperature [°C]

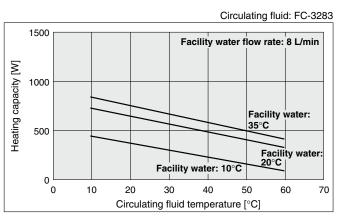


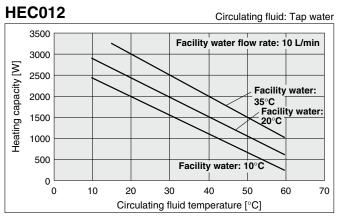


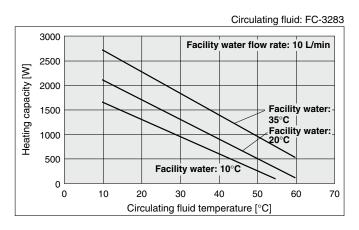
Peltier-Type Chiller Thermo-con (Water-cooled) **HEC-W** Series

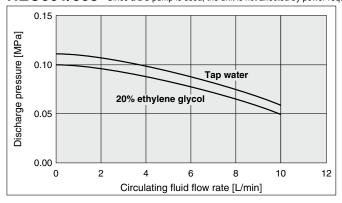

Heating Capacity

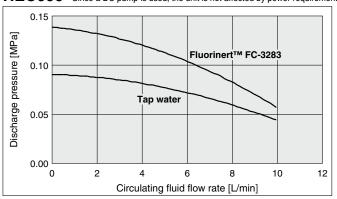

The values shown on the performance chart are not guaranteed, but typical. Allow margins for safety when selecting the model.



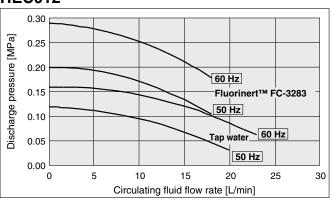



HEC003 Circulating fluid: Tap water 1000 Facility water flow rate: 5 L/min 800 Heating capacity [W] Facility water: 30°C 600 Facility water: 20°C 400 200 Facility water: 10°C 0 0 10 20 30 60 70 40 50 Circulating fluid temperature [°C]

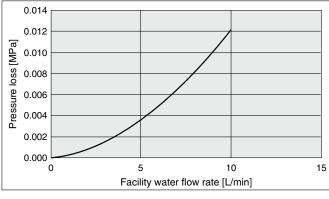



HEC-W Series

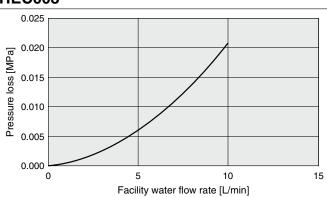
Pump Capacity (Thermo-con Outlet)


 $\begin{tabular}{ll} \textbf{HEC001/003} & Since a DC pump is used, the unit is not affected by power requirements. \end{tabular}$

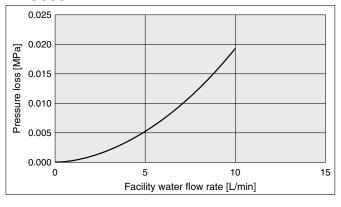
HEC006 Since a DC pump is used, the unit is not affected by power requirements.

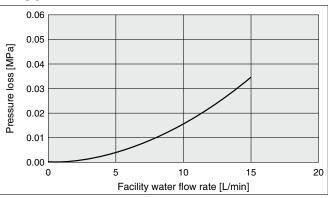


HEC012

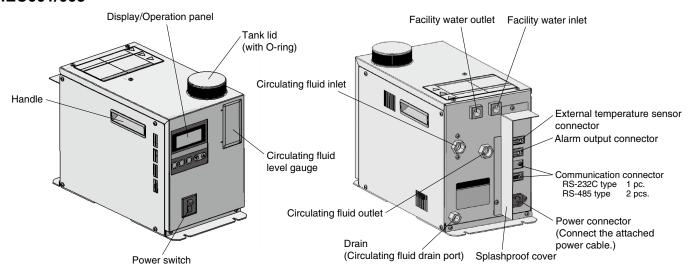


Pressure Loss in Facility Water Circuit

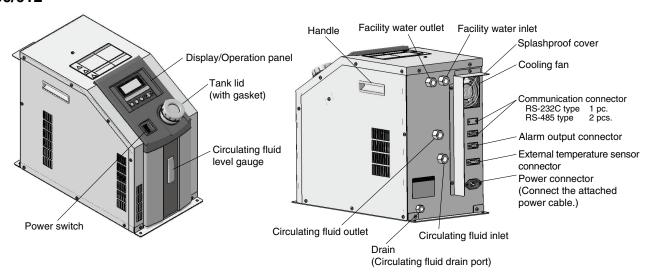



HEC003

HEC006



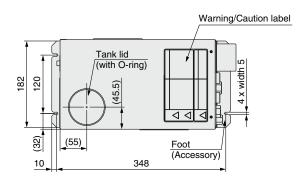
HEC012

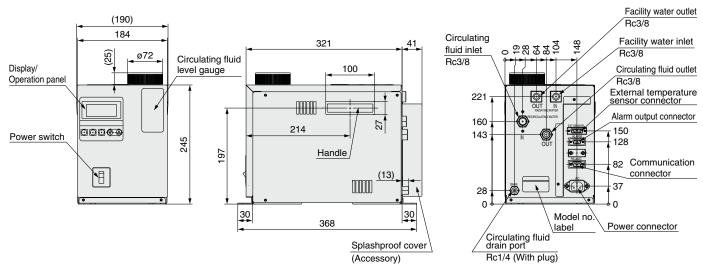


Parts Description

HEC001/003

HEC006/012

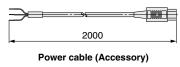



HEC-W Series

Dimensions

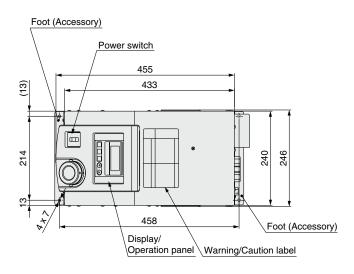
HEC001-W5□

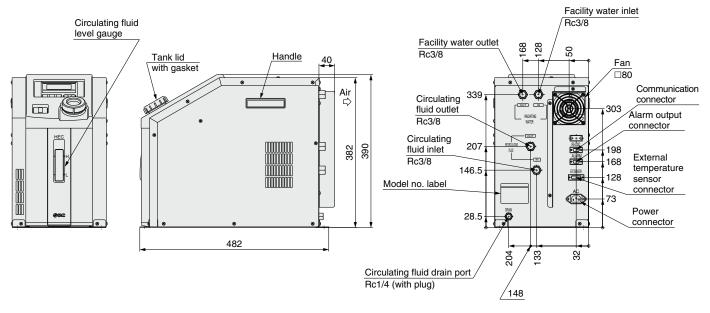
HEC003-W5□


For NPT thread specification (-N), all fittings (including those at the circulating fluid drain port) are made of NPT.

Power Cable (Accessory)

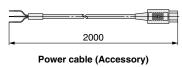
Connector: IEC 60320 C13 or equivalent


Cable: 14AWG, O.D. ø8.4


Contents
100 to 240 VAC
100 to 240 VAC
PE

Dimensions

HEC006-W2□

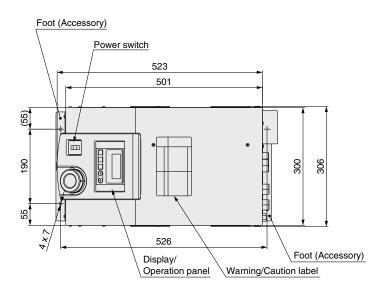


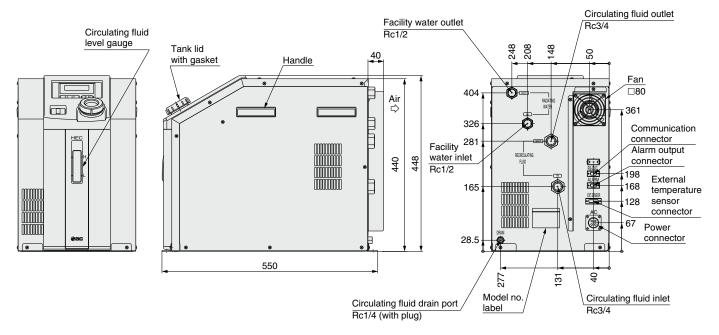
For NPT thread specification (-N), all fittings (including those at the circulating fluid drain port) are made of NPT.

Power Cable

Connector: IEC 60320 C13 or equivalent Cable: 14AWG, O.D. ø8.4

	,
Wire color	Contents
Black	200 to 220 VAC
Black	200 to 220 VAC
Green/Yellow	PE

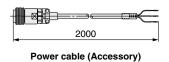



SMC

HEC-W Series

Dimensions

HEC012-W2□


For NPT fitting specification (-N), all fittings (including those at the circulating fluid drain port) are made of NPT.

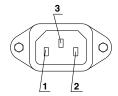
Power Cable

Connector: DDK CE05-6A18-10SD-D-BSS or equivalent

Cable: 14AWG, O.D. ø8.4

<u> </u>	oabioi i ii iii oi, oibi boi i		
Wire color	Contents		
Black	200 to 220 VAC		
Black	200 to 220 VAC		
Green/Yellow	PE		

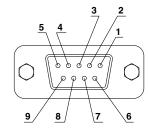
Connectors


HEC006-W2 - /001-W5 - /003-W5

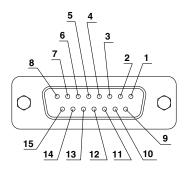
1. Power connector (AC) IEC 60320 C14 or equivalent HEC006-W2□

HEC001-W5□
HEC003-W5□

Pin No.	Contents	
1	200 to 220 VAC	
2	200 to 220 VAC	
3	PE	

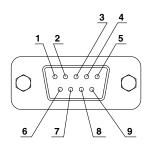

Pin No.	Contents		
1	100 to 240 VAC		
2	100 to 240 VAC		
3	PE		

2. Communication connector (RS-232C or RS-485) D-sub 9 pin (socket) Holding screw: M2.6


	Pin No.	Signal contents		
		RS-232C	RS-485	
	1	Unused	BUS+	
	2	RD	BUS-	
	_	-0		

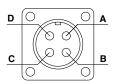
Pin No.	Olgital contonto		
PIII INO.	RS-232C	RS-485	
1	Unused	BUS+	
2	RD	BUS-	
3	SD	Unused	
4	Unused	Unused	
5	SG	SG	
6-9	Unused	Unused	
	·		

3. External sensor connector (EXT.SENSOR) D-sub 15 pin (socket) Holding screw: M2.6


Pin No.	Signal contents	
1-2	Unused	
3	Terminal A of resistance temperature detector	
4	Terminal B of resistance temperature detector	
5	Terminal B of resistance temperature detector	
6-14	Unused	
15	FG	

4. Alarm output connector (ALARM) D-sub 9 pin (pin)

Holding screw: M2.6


Pin No.	Signal contents	
1	Contact a for output cut-off alarm (open when alarm occurs)	
2	Common for output cut-off alarm	
3	Contact b for output cut-off alarm (closed when alarm occurs)	
4-5	Unused	
6	Contact a for upper/lower temp. limit alarm (open when alarm occurs)	
7	Common for upper/lower temp. limit alarm	
8	Contact b for upper/lower temp. limit alarm (closed when alarm occurs)	
9	Unused	

HEC012-W2□

Power connector (AC) DDK CE05-2A18-10PD-D or equivalent

Pin No.	Contents		
Α	200 to 220 VAC		
В	200 to 220 VAC		
С	Unused		
D	PE		

HEC-W Series

Alarm

This unit is equipped as standard with a function allowing 16 kinds of alarms to display on the LCD and can be read out by serial communication. Also, it can generate relay output for upper/lower temperature limit alarm and output cut-off alarm.

Alarm code	Alarm description	Operation status	Main reason
WRN	Upper/Lower temp. limit alarm	Continue	The temperature has exceeded the upper or lower limit of the target temperature.
ERR00	CPU hung-up	Stop	The CPU has crashed due to noise, etc.
ERR01	CPU check error	Stop	The contents of the CPU cannot be read out correctly when the power supply is turned on.
ERR03	Back-up data error	Stop	The contents of the back-up data cannot be read out correctly when the power supply is turned on.
ERR04	EEPROM writing error	Stop	The data cannot be written to EEPROM.
ERR05	EEPROM input over time error*4	Stop	The number of times of writing to EEPROM has exceeded 1 million times.
ERR11	DC power supply failure	Stop	The DC power supply has failed (due to abnormal high temperature) or an irregular voltage has occurred or the thermo-module has been short-circuited.
ERR12	Internal temp. sensor high temp. error	Stop	The internal temperature sensor has exceeded the upper limit of cut-off temperature.
ERR13	Internal temp. sensor low temp. error	Stop	The internal temperature sensor has exceeded the lower limit of cut-off temperature.
ERR14	Thermostat alarm	Stop	The thermostat has been activated due to insufficient of the facility water or high temperature.
ERR15	Abnormal output alarm	Continue	The temperature cannot be changed even at 100% output due to overload or disconnection of the thermo-module.
ERR16	Pump failure*1 or low circulating fluid level alarm*2	Stop	The pump has been overloaded*1 or the flow switch is activated*2.
ERR17	Internal temp. sensor disconnection alarm	Stop	The internal temperature sensor has been disconnected or short-circuited.
ERR18	External temp. sensor disconnection alarm	Continue	The external temperature sensor has been disconnected or short-circuited. (Only detected when in learning control or external tune control.)
ERR19	Abnormal auto tuning alarm	Stop	Auto tuning has not been completed within 20 minutes.
ERR20	Low fluid level alarm*3	Stop	The amount of circulating fluid in the tank has dropped and the level switch is activated.

Maintenance

Maintenance of this unit is performed only in the form of return to and repair at SMC's site. As a rule, SMC will not conduct on-site maintenance. Separately, the following parts have a limited life and need to be replaced before the life ends.

Parts Life Expectation

Description	Expected life	Possible failure
Pump	3 to 5 years	The bearing is worn so the pump fails to transfer the circulating fluid, which results in temperature control failure.
Fan	5 to 10 years	The bearing uses up lubrication and makes the fan unable to supply enough air, which increases the internal temperature of the thermo-con, and activates the overheat protection of the power supply and generates the alarm.
DC power supply	5 to 10 years	The capacity of the electrolytic condenser decreases, and causes abnormal voltage which results in DC power supply failure and stops the thermo-con.
Display panel	50,000 hours (approx. 5 years)	The display turns off when the backlight of the LCD reaches the end of its life.

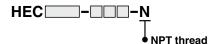
^{*1} The HEC012 only *2 Optional for the HEC001 and HEC003 only (Not available for the HEC006)

^{*3} Optional for the HEC001 and HEC003

^{*4} The HEC001 and HEC003 only

HEC-W Series Options

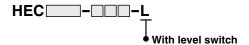
* Options have to be selected when ordering the thermo-con. It is not possible to add them after purchasing the unit.



This is an ON/OFF switch detecting low levels of the circulating fluid.

When the fluid volume is 1 L/min. or less, "ERR16" is displayed and the thermo-con stops. This switch is installed between the circulating fluid inlet and the tank, and built into the Thermo-con. Refer to page 520.

Type	Applicable model
Water-	HEC001-W5□-F
cooled	HEC003-W5□-F



The connection parts of circulating fluid piping, facility water piping and circulating fluid drain port are NPT thread type.

Туре	Applicable model
Water- cooled	HEC001-W5□-N
	HEC003-W5□-N
	HEC006-W2□-N
	HEC012-W2□-N

Option symbol

With Level Switch

This switch is used to detect a LOW level of tank fluid. When the fluid level becomes below the LOW level, "ERR20" is displayed and the thermo-con stops. This switch is installed in the circulating fluid tank and built into the thermo-con. Refer to page 520.

Туре	Applicable model
Water-	HEC001-W5□-L
cooled	HEC003-W5□-L

Other models include a level switch as standard equipment.

HEC-W Series Specific Product Precautions 1

Be sure to read this before handling the products. Refer to page 605 for safety instructions and pages 606 to 609 for temperature control equipment precautions.

Design

⚠ Warning

- 1. This catalog shows the specifications of the thermo-con.
 - Check detailed specifications in the separate "Product Specifications", and evaluate the compatibility of the thermo-con with user's system.
 - Although a protection circuit as a single unit is installed, the user is requested to carry out a safety design for the whole system.

Handling

⚠ Warning

1. Thoroughly read the operation manual.

Read the operation manual completely before operation, and keep the manual where it can be referred to as necessary.

2. If the set temperature is repeatedly changed by 10°C or more, the thermo-con may fail in short periods of time.

Operating Environment/Storage Environment

⚠ Warning

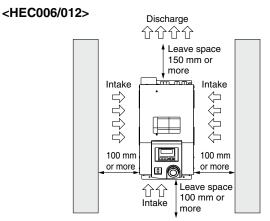
1. Keep within the specified ambient temperature and humidity range.

Also, if the set temperature is too low, condensation may form on the inside of the thermo-con or the surface of piping even within the specified ambient temperature range. Dew condensation can cause failure, and so must be avoided by considering operating conditions.

2. The thermo-con is not designed for clean room usage.

The pump and fan generate dust.

Low molecular siloxane can damage the contact of the relay.


Use the thermo-con in a place free from low molecular siloxane.

Operating Environment/Storage Environment

Marning

4. Installation conditions

If the space for the intake and discharge of air is insufficient, the amount of transferred air will decrease, which can impair the performance and life of the product. Therefore, keep the conditions illustrated below for installation. Also, if ambient temperature is expected to be over 35°C, vent or exhaust air to prevent the increase of ambient temperature over 35°C.

<HEC001/003>

It is not necessary to leave space for ventilation. Install the product while taking working space for installation and maintenance into account. However, ventilation must be also considered so that ambient temperature does not excessively rise.

Facility Water

⚠ Caution

1. If the temperature of the facility water is too low, it can cause formation of dew condensation inside the heat exchanger.

Supply facility water with a temperature over the atmospheric dew point to avoid the formation of dew condensation.

If the facility water piping is connected to multiple machines, the facility water exchanges heat at the upstream side and its temperature will become higher as it goes downstream.

Limit the number of connected thermo-cons to two per facility water system, and if more than two thermo-cons are to be connected, increase the number of systems.

Circulating Fluid

∧ Caution

 Use tap water or fluid which will not damage the wetted parts material as described in this catalog's specifications.

(PPE, PP glass 10%, Alumina ceramics, Carbon, EPDM, Stainless steel 303, Stainless steel 304, PE, PP, NBR)

2. Deionized water (with an electric conductivity of approx. 1 μ S/cm) can be used, but may lose its electric conductivity.

HEC-W Series Specific Product Precautions 2

Be sure to read this before handling the products. Refer to page 605 for safety instructions and pages 606 to 609 for temperature control equipment precautions.

Circulating Fluid

⚠ Caution

3. If deionized water is used, bacteria and algae may grow within a short period.

If the thermo-con is operated with bacteria and algae present, its heat exchanging capacity or the capacity of the pump may deteriorate. Replace all deionized water regularly according to the conditions (once a month as a guide).

- 4. If using a fluid other than this catalog, please contact SMC beforehand.
- 5. The maximum operating pressure of circulating fluid circuit is 0.1 MPa.

If this pressure is exceeded, leakage from the tank in the thermo-con may result.

Select a pipe with a length and diameter which allows a flow rate of 3 L/min or more for the circulating fluid.

If the flow rate is less than these values, the thermo-con will not be able to provide precise control, and the repeated cooling and heating operations may cause it to fail.

7. A magnet driven pump is used as the circulating pump.

Fluids which contain metal powders such as iron powder cannot be used.

8. The thermo-con must not be operated without circulating fluid.

The pump can break due to idling.

- If the tank lid is opened after the supply of circulating fluid, the circulating fluid may spill out depending on the condition of the external piping.
- If an external tank is used, the circulating fluid may spill out from the internal tank lid depending on where the external tank is installed.

Check that the internal tank has no leakage if using an external tank.

11. If there is a point where fluid is released to atmosphere externally (tank or piping), minimize the piping resistance at the circulating fluid return side.

If the piping resistance is too large, the piping may be crushed or the built-in circulator tank may be deformed or cracked because the pressure in the piping for return will become negative. The built-in circulator tank is made of resin (PE). Therefore, the tank may be crushed if the pressure is negative. Special attention must be paid if the flow rate of the circulating fluid is high. To avoid a negative pressure of -0.02 MPa or below, the piping for return should be as thick and short as possible to minimize the piping resistance. It is also effective to restrict the flow rate of circulating fluid or remove the gasket of the internal tank for the release to atmosphere.

12. If fluorinated fluid is used in the thermo-con (HEC006/012), static electricity will be generated by the flow of fluid. This static electricity may be discharged to the board of the thermo-con, causing damage, operation failure, or loss of data such as set temperatures.

Ground pipe in order to remove static electricity.

13. Avoid operation with cavitation or bubbles due to low fluid level in the tank. This may shorten the pump life.

Circulating Fluid

⚠ Caution

14. If tap water is used, it should satisfy the quality standards shown below.

Tap Water (as a Circulating Fluid) Quality Standards

The Japan Refrigeration and Air Conditioning Industry Association

JRA GL-02-1994 "Cooling water system - Circulating type - Supply water"

		Unit		Influence	
	Item		Standard value	Corrosion	Scale generation
	pH (at 25°C)	_	6.0 to 8.0	0	0
_	Electric conductivity (25°C)	[µS/cm]	100*1 to 300*1	0	0
Standard item	Chloride ion (Cl ⁻)	[mg/L]	50 or less	0	
<u>5</u>	Sulfuric acid ion (SO ₄ 2-)	[mg/L]	50 or less	0	
nda	Acid consumption amount (at pH4.8)	[mg/L]	50 or less		0
Sta	Total hardness	[mg/L]	70 or less		0
	Calcium hardness (CaCO ₃)	[mg/L]	50 or less		0
	Ionic state silica (SiO ₂)	[mg/L]	30 or less		0
_	Iron (Fe)	[mg/L]	0.3 or less	0	0
ite	Copper (Cu)	[mg/L]	0.1 or less	0	
Reference item	Sulfide ion (S ₂ ⁻)	[mg/L]	Should not be detected.	0	
	Ammonium ion (NH ₄ +)	[mg/L]	0.1 or less	0	
	Residual chlorine (CI)	[mg/L]	0.3 or less	0	
	Free carbon (CO ₂)	[mg/L]	4.0 or less	0	

- *1 In the case of [M Ω ·cm], it will be 0.003 to 0.01.
- \bullet \bigcirc : Factors that have an effect on corrosion or scale generation.
- Even if the water quality standards are met, complete prevention of corrosion is not guaranteed.

Communication

⚠ Caution

1. The set value can be written to EEPROM, but only up to approx. 1 million times.

In particular, pay attention to how many of times the writing is performed using the communication function.

Maintenance

⚠ Warning

1. Prevention of electric shocks and fire

Do not operate the switch with wet hands. Also, do not operate the thermo-con when water is present on its exterior surface.

2. Action in the case of error

If any error such as an abnormal sound, smoke, or bad odor occurs, cut off the power at once, and stop supplying and conveying fluid. Please contact SMC or a sales distributor to repair the thermo-con.

3. Regular inspection

Check the following items at least once a month. The inspection must be done by an operator who has sufficient knowledge and experience.

- a) Check the displayed contents.
- b) Check the temperature, vibration level, and for abnormal sounds in the body of the thermo-con.
- c) Check the voltage and current of the power supply system.
- d) Check the circulating fluid for leakage, contamination, and the presence of foreign matter. Replace water when necessary.
- e) Check for leakage, quality change, flow rate and temperature of facility water.

