Size: 10, 16, 20, 25, 32, 40

Compact and light, various gripping forces
LEHZ Series

Size	Stroke $/$ both sides $[\mathrm{mm}]$	Gripping force [N]	
	Basic	Compact	
$\mathbf{1 0}$	4	6 to 14	2 to 6
$\mathbf{1 6}$	6		3 to 8
$\mathbf{2 0}$	10	16 to 40	11 to 28
$\mathbf{2 5}$	14		
$\mathbf{3 2}$	22	52 to 130	-
$\mathbf{4 0}$	30	84 to 210	-

F Type (2 fingers) >p.841, 845

Can hold various types of workpieces with a long stroke
(): Long stroke

LEHF Series		
Size	Stroke/ both sides $[\mathrm{mm}]$	Gripping force $[\mathrm{N}]$
$\mathbf{1 0}$	$16(32)$	3 to 7
$\mathbf{2 0}$	$24(48)$	11 to 28
$\mathbf{3 2}$	$32(64)$	48 to 120
$\mathbf{4 0}$	$40(80)$	72 to 180

ZJ Type (2 fingers) >p. 827

With dust cover (Equivalent to IP50) 3 types of cover material (Finger portion only)

S Type (3 fingers) $\quad>\mathrm{p} .864$

Can hold round workpieces

LEHS Series

Size	Stroke/ diameter [mm]	Gripping force [N]	
		Basic	Compact
$\mathbf{1 0}$	4	2.2 to 5.5	1.4 to 3.5
$\mathbf{2 0}$	6	9 to 22	7 to 17
$\mathbf{3 2}$	8	36 to 90	-
$\mathbf{4 0}$	12	52 to 130	-

Step data
input type JXC51/61 Series

- 64 positioning points - Input using controller setting kit or teaching box

EtherCAT/EtherNet/IP ${ }^{\text {TM }} /$ PROFINET/DeviceNet ${ }^{\circledR /}$ IO-Link/CC-Link direct input type $J X C E \square / 91 / P 1 / D 1 / L \square / M 1$ Series

Pulse input

type
LECPA Series
-With drop prevention function (Self-lock mechanism is provided for all series.)
Gripping force of the workpieces is maintained when stopped or restarted.
The workpieces can be removed with manual override.

-Compact body sizes and long stroke variations

Gripping force equivalent to the widely used air grippers is available.

Gripper 2-Finger Type

LEHZ Series/Size: 10, 16, 20, 25, 32, 40
LEHZJ Series/Size: 10, 16, 20, 25
LEHF Series/Size: 10, 20, 32, 40
\bullet Compact and lightweight Various gripping forces
Weight: 165 g (LEHZ10)

Side tapped mounting
 close direction

Flat fingers

- Chloroprene rubber (black): Standard
- Fluororubber (black): Option
- Silicone rubber (white): Option

OSealed-construction dust cover (Equivalent to IP50)

- Prevents machining chips, dust, etc., from getting inside - Prevents spattering of grease, etc.

-3 types of cover material (Finger portion only)

SSMC

OCan set position, speed and force (64 points)

OEnergy-saving product

Power consumption reduced by self-lock mechanism

OWith gripping check function

Identify workpieces with different dimensions/ detect mounting and removal of the workpieces.

Gripper 3-Finger Type

LEHS Series/Size: 10, 20, 32, 40
Can hold various types of workpieces with a long stroke
-With internal battery-less absolute encoder (Size: 32, 40) Restart from the last stop position is possible after recovery of the power supply. Reduced maintenance (No need for control or replacement)

-Can hold round workpieces

Compact and large gripping force can be obtained through the wedge cam structure.

<Mounting Variations>

LEHZ/LEHZJ Series

A When using the thread on the side of the body

B When using the thread on the mounting plate

C When using the thread on the back of the body

LEHF Series

A When using the thread on the body

3 When using the thread on the mounting plate

C When using the thread on the back of the body

LEHS Series

A When using the thread on the mounting plate

B When using the thread on the back of the body

Motor cable mounting direction can be selected.

LEHZ/LEHZJ Series

LEHF Series

Application Examples

Gripping of components that are easily deformed or damaged

For speed and gripping force control and positioning

Incremental (Step Motor 24 VDC)

Gripper 2-Finger Type LEHZ Series

Model Selection	p. 811
How to Order	p. 817
Specifications	p. 820
Construction	p. 821
Dimensions	p. 822
Finger Options	p. 825

Incremental (Step Motor 24 VDC)

Gripper 2-Finger Type/With Dust Cover LEHZJ Series

Model Selection	p. 827
How to Order	p. 833
Specifications	p. 836
Construction	p. 837
Dimensions	p. 838

Specific Product Precautions
p. 874

Incremental (Step Motor 24 VDC) Controllers

Step Data Input Type/JXC51/61 Series
p. 1017

EtherCAT/EtherNet/IPTM/PROFINET/DeviceNet®/IO-Link/CC-Link Direct Input Type/JXCE $\square / 91 / P 1 / D 1 / L \square / M 1$ Series ... p. 1063
Gateway Unit/LEC-G Series
p. 1038

Programless Controller/LECP1 Series............................ p. 1042
Step Motor Driver/LECPA Series p. 1057
Actuator Cable
p. 1091

Communication Cable for Controller Setting/LEC-W2A-
p. 1094

Teaching Box/LEC-T1 ... p. 1095

Battery-less Absolute (Step Motor 24 VDC)

Gripper LEHF Series

Model Selection p. 841
How to Order p. 849
Specifications p. 851
Construction p. 852
Dimensions p. 853

Incremental (Step Motor 24 VDC)

Gripper 2-Finger Type LEHF Series

Model Selection p. 845
How to Order p. 855
Specifications p. 859
Dimensions p. 860
Incremental (Step Motor 24 VDC)
Gripper 3-Finger Type LEHS Series
Model Selection p. 864
How to Order p. 867
Specifications p. 870
Construction p. 871
Dimensions p. 872

3-Axis Step Motor Controller

EtherNet/IPTM Type/JXC92 Series p. 1079

4-Axis Step Motor (Servo/24 VDC) Controller

Parallel I/O Type/JXC73/83 Series p. 1081
EtherNet/IP ${ }^{\text {тм }}$ Type/JXC93 Series p. 1081

Grippers

2-Finger Type LEHZ series

2-Finger Type LEHF Series

2-Finger Type/With Dust Cover LEHZJ Series
Incremental (Siep Motor 24 VDC) p. 833

3-Finger Type LEHS series

Incremental (Step Motor 24 VDC) p .867

Gripper 2-Finger Type

LEHZ Series

Model Selection

Selection Procedure

Step 1 Check the gripping force.

Check the
Conditions.
:---:
gripping force graph.
required gripping force.
:---:
pushing speed.

Example

Workpiece mass: 0.1 kg

Guidelines for the selection of the gripper with respect to workpiece mass

- Although conditions differ according to the workpiece shape and the coefficient of friction between the attachments and the workpiece, select a model that can provide a gripping force of 10 to 20 times*1 the workpiece weight, or more.
*1 For details, refer to the calculation of required gripping force.
- If high acceleration or impact forces are encountered during motion, a further margin of safety should be considered.
Example) When it is desired to set the gripping force at 20 times or more above the workpiece weight.

Required gripping force

$=0.1 \mathrm{~kg} \times 20 \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \approx 19.6 \mathrm{~N}$ or more

Pushing force: 70\%

Pushing force is one of the values of step data that is input into the controller.
Gripping point distance: 30 mm

When the LEHZ2O is selected.

- Gripping force can be found to be 27 N from the intersection point of gripping point distance $L=30$ mm and pushing force of 70%.
- Gripping force is 27.6 times greater than the workpiece weight, and therefore satisfies a gripping force setting value of 20 times or more.

- Pushing speed is satisfied at the point where 70% of the pushing force and $30 \mathrm{~mm} / \mathrm{s}$ of the pushing speed cross.
* Confirm the pushing speed range from the determined pushing force [\%].
<Reference> Coefficient of friction μ (depends on the operating environment, contact pressure, etc.)

Coefficient of friction μ	Attachment - Material of workpieces (guideline)
0.1	Metal (surface roughness Rz3.2 or less)
0.2	Metal
0.2 or more	Rubber, Resin, etc.

[^0]
Selection Procedure

Step 1 Check the gripping force: LEHZ Series

- Indication of gripping force

The gripping force shown in the graphs below is expressed as " F ", which is the gripping force of one finger, when both fingers and attachments are in full contact with the workpiece as shown in the figure below.

External Gripping State

Basic

* Pushing force is one of the values of

LEHZ10

LEHZ16

- Set the workpiece gripping point " L " so that it is within the range shown in the figure below.

Internal Gripping State

LEHZ10L

LEHZ16L

LEHZ Series

Incremental (Step Motor 24 VDC)

Selection Procedure

Step 1 Check the gripping force: LEHZ Series

Basic	* $\begin{array}{l}\text { Pushing force is one of the values of } \\ \text { step data that is input into the controller. }\end{array}$

LEHZ20

LEHZ25

LEHZ32

LEHZ40

Pushing force is one of the values of step data that is input into the controller.

LEHZ20L

LEHZ25L

Selection of Pushing Speed

- Set the [Pushing force] and the [Trigger LV] within the range shown in the figure below.

Basic

Compact

Selection Procedure

Step 2 Check the gripping point and overhang: LEHZ Series

- Decide the gripping position of the workpiece so that the amount of overhang " H " stays within the range shown in the figure below.
- If the gripping position is out of the limit, it may shorten the life of the electric gripper.

* Pushing force is one of the values of step data that is input into the controller.

LEHZ16

LEHZ20

Internal Gripping State

* Pushing force is one of the values of

Compact
LEHZ10L

LEHZ16L

LEHZ20L

LEHZ Series

Incremental (Step Motor 24 VDC)

Selection Procedure

Step 2 Check the gripping point and overhang: LEHZ Series

Basic	*Pushing force is one of the values of step data that is input into the controller.

LEHZ25

* Pushing force is one of the values of step data that is input into the controller.
Compact
LEHZ25L

LEHZ32

LEHZ40

Selection Procedure

Step 3 Check the external force on fingers: LEHZ Series

Fv: Allowable vertical load

Mp: Pitch moment

My: Yaw moment

Mr: Roll moment

H, L: Distance to the point at which the load is applied [mm]

Model	Allowable vertical load Fv [N]	Static allowable moment		
		Pitch moment: Mp [$\mathrm{N} \cdot \mathrm{m}$]	Yaw moment: My [$\mathrm{N} \cdot \mathrm{m}$]	Roll moment: Mr [N.m]
LEHZ10(L)K2-4	58	0.26	0.26	0.53
LEHZ16(L)K2-6	98	0.68	0.68	1.36
LEHZ20(L)K2-10	147	1.32	1.32	2.65
LEHZ25(L)K2-14	255	1.94	1.94	3.88
LEHZ32(L)K2-22	343	3	3	6
LEHZ40(L)K2-30	490	4.5	4.5	9

* Values for load in the table indicate static values.

Calculation of allowable external force (when moment load is applied)	Calculation example
$\text { Allowable load } \mathbf{F}[\mathrm{N}]=\frac{\mathbf{M} \text { (Static allowable moment) }[\mathbf{N} \cdot \mathrm{m}]}{\mathbf{L} \times 10^{-3} * 1}$	When a static load of $f=10 \mathrm{~N}$ is operating, which applies pitch moment to point $\mathrm{L}=30 \mathrm{~mm}$ from the LEHZ16K2-6 guide. Therefore, it can be used. $\begin{aligned} & \text { Allowable load } F=\frac{0.68}{30 \times 10^{-3}} \\ &=22.7[\mathrm{~N}] \\ & \text { Load } f=10[\mathrm{~N}]<22.7[\mathrm{~N}] \end{aligned}$

Gripper

2-Finger Type

Communication plug connector, I/O cable*9

Symbol	Type	Applicable interface
Nil	Without accessory	-
\mathbf{S}	Straight type communication plug connector	DeviceNet ${ }^{\circledR}$
\mathbf{T}	T-branch type communication plug connector	CC-Link Ver. 1.10
$\mathbf{1}$	I/O cable $(1.5 \mathrm{~m})$	Parallel input (NPN)
$\mathbf{3}$	I/O cable $(3 \mathrm{~m})$	
$\mathbf{5}$	I/O cable $(5 \mathrm{~m})$	

Symbol	Numberof axes	Specification
$\mathbf{1}$	Single axis	Standard
F	Single axis	With STO sub-function

$L E C \square$ Series (For delails, refer to page 819.)

LEHZ Series

Incremental (Step Motor 24 VDC)

Compatible Controllers/Drivers

	Step data input type	Programless type	Pulse input type
Type			

Type	EtherCAT direct input type	EtherCAT direct input type with STO sub-function	EtherNet//PTM direct input type	EtherNetIIPTM direct input type with STO sub-function	PROFINET direct input type	PROFINET direct input type with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input type	10-Link direct input type	10-Link direct input type with STO sub-function	CC-Link direct input type
Series	JXCE1	JXCEF	JXC91	JXC9F	JXCP1	JXCPF	JXCD1	JXCL1	JXCLF	JXCM1
Features	EtherCAT direct input	EtherCAT direct input with STO sub-function	EtherNet//PTM direct input	EtherNet/IPTM direct input with STO sub-function	PROFINET direct input	PROFINET direct input with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input	IO-Link direct input	IO-Link direct input with STO sub-function	CC-Link direct input
Compatible motor	Step motor (Servo/24 VDC)									
Max. number of step data	64 points									
Power supply voltage	24 VDC									
Reference page	1063									

Specifications

Model			LEHZ10	LEHZ16	LEHZ20	LEHZ25	LEHZ32	LEHZ40
	Open and close stroke/both sides [mm]		4	6	10	14	22	30
	Lead [mm]		$\begin{aligned} & 251 / 73 \\ & (3.438) \end{aligned}$	$\begin{aligned} & 249 / 77 \\ & (3.234) \end{aligned}$	$\begin{aligned} & 246 / 53 \\ & (4.642) \end{aligned}$	$\begin{aligned} & 243 / 48 \\ & (5.063) \end{aligned}$	$\begin{aligned} & 242 / 39 \\ & (6.205) \end{aligned}$	$\begin{aligned} & 254 / 43 \\ & (5.907) \end{aligned}$
	Gripping force$[\mathrm{N}]^{* 1 * 3}$	Basic	6 to 14		16 to 40		52 to 130	84 to 210
		Compact	2 to 6	3 to 8	11 to	28	-	-
	Open and close speed/ Pushing speed [mm/s]		5 to 80/5 to 50		5 to 100/5 to 50		5 to 120/5 to 50	
	Drive method		Slide screw + Slide cam					
	Finger guide type		Linear guide (No circulation)					
	Repeated length measurement accuracy [mm]*4		± 0.05					
	Finger backlash/ one side [mm] ${ }^{* 5}$		0.25 or less				0.5 or less	
	Repeatability [mm]**		± 0.02					
	Positioning repeatability/one side [mm]		± 0.05					
	Lost motion/one side [mm]*7		0.25 or less				0.3 or less	
	Impact/Vibration resistance [$\left.\mathrm{m} / \mathrm{s}^{2}\right]^{* 8}$		150/30					
	Max. operating frequency [C.P.M]		60					
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40					
	Operating humidity range [\%RH]		90 or less (No condensation)					
	Enclosure		IP20					
	Weight [g]	Basic	165	220	430	585	1120	1760
		Compact	135	190	365	520	-	-
	Motor size		$\square 20$		$\square 28$		$\square 42$	
	Motor type		Step motor (Servo/24 VDC)					
	Encoder		Incremental					
	Power supply voltage [V]		24 VDC $\pm 10 \%$					
	Power [W]*9	Basic	Max. power 19		Max. power 51		Max. power 57	Max. power 61
		Compact	Max. power 14		Max. power 42		-	-

*1 Gripping force should be from 10 to 20 times the workpiece weight. Moving force should be 150% when releasing the workpiece. Gripping force accuracy should be $\pm 30 \%$ (F.S.) for LEHZ10/16, $\pm 25 \%$ (F.S.) for LEHZ20/25 and $\pm 20 \%$ (F.S.) for LEHZ32/40. Gripping with heavy attachment and fast pushing speed, may not reach the product specification. In this case, decrease the weight and lower the pushing speed.
*2 Pushing speed should be set within the range during pushing (gripping) operations. Otherwise, it may cause a malfunction The open/close speed and pushing speed are for both fingers. The speed for one finger is half this value.
3 The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20\%)
4 Repeated length measurement accuracy means dispersion (value on the controller monitor) when the workpiece is repeatedly held in the same position
5 There will be no influence of backlash during pushing (gripping) operations. Make the stroke longer for the amount of backlash when opening
6 Repeatability means the variation of the gripping position (workpiece position) when gripping operations are repeatedly performed by the same sequence for the same workpiece.
*7 A reference value for correcting errors in reciprocal operation which occur during positioning operations
8 Impact resistance: No malfunction occurred when the gripper was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the gripper in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the gripper in the initial state.)
9 Indicates the max. power during operation (including the controlle
This value can be used for the selection of the power supply.
How to Mount
a) When using the thread on the side of the body

b) When using the thread on the mounting plate

SSMC
c) When using the thread on the back of the body

LEHZ Series

Incremental (Step Motor 24 VDC)

Construction

LEHZ Series

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Motor plate	Aluminum alloy	Anodized
$\mathbf{3}$	Guide ring	Aluminum alloy	
4	Slide nut	Stainless steel	Heat treatment + Special treatment
$\mathbf{5}$	Slide bolt	Stainless steel	Heat treatment + Special treatment
$\mathbf{6}$	Needle roller	High carbon chromium bearing steel	
$\mathbf{7}$	Needle roller	High carbon chromium bearing steel	
$\mathbf{8}$	Finger assembly	-	
9	Lever	Special stainless steel	
$\mathbf{1 0}$	Step motor (Servo/24 VDC)	-	

Replacement Parts (8) Finger Assembly

	Basic (Nil)	Side tapped mounting (A)	Through-hole in open/ close direction (B)	Flat fingers (C)
Size				
10	MHZ-AA1002	MHZ-AA1002-1	MHZ-AA1002-2	MHZ-AA1002-3
16	MHZ-AA1602	MHZ-AA1602-1	MHZ-AA1602-2	MHZ-AA1602-3
20	MHZ-AA2002	MHZ-AA2002-1	MHZ-AA2002-2	MHZ-AA2002-3
25	MHZ-AA2502	MHZ-AA2502-1	MHZ-AA2502-2	MHZ-AA2502-3
32	MHZ-A3202	MHZ-A3202-1	MHZ-A3202-2	MHZ-A3202-3
40	MHZ-A4002	MHZ-A4002-1	MHZ-A4002-2	MHZ-A4002-3

Dimensions

LEHZ10(L)K2-4

	$[\mathrm{mm}]$	
Model	L	$(\mathrm{L} 1)$
LEHZ10K2-4 \square	103.8	(59.7)
LEHZ10LK2-4 \square	87.2	(43.1)

LEHZ16(L)K2-6
*2 Secure the motor cable so that the cable is not repeatedly bent.

LEHZ Series

Incremental (Step Motor 24 VDC)

Dimensions

*1 This is the range within which the fingers can move when it returns to origin. Make sure that workpieces mounted on the fingers do not interfere with other workpieces or the facilities around the fingers.
*2 Secure the motor cable so that the cable is not repeatedly bent.

LEHZ25(L)K2-14

*1 This is the range within which the fingers can move when it returns to origin. Make sure that workpieces mounted on the fingers do not interfere with other workpieces or the facilities around the fingers.
*2 Secure the motor cable so that the cable is not repeatedly bent.

Dimensions

*1 This is the range within which the fingers can move when it returns to origin. Make sure that workpieces mounted on the fingers do not interfere with other workpieces or the facilities around the fingers.
*2 Secure the motor cable so that the cable is not repeatedly bent.
*1 This is the range within which the fingers can move when it returns to origin Make sure that workpieces mounted on the fingers do not interfere with other workpieces or the facilities around the fingers.
*2 Secure the motor cable so that the cable is not repeatedly bent.

LEHZ Series
 Finger Options

Side Tapped Mounting (A)

Model	A	B	C	MM
LEHZ10(L)K2-4A \square	3	5.7	2	M2.5 $\times 0.45$
LEHZ16(L)K2-6A \square	4	7	2.5	M3 $\times 0.5$
LEHZ20(L)K2-10A \square	5	9	4	$\mathrm{M} 4 \times 0.7$
LEHZ25(L)K2-14A \square	6	12	5	$\mathrm{M} 5 \times 0.8$
LEHZ32K2-22A \square	7	14	6	M6 $\times 1$
LEHZ40K2-30A \square	9	17	7	M8 $\quad 1.25$

Through-hole in Open/Close Direction (B)

* Mounting hole for
attachment

	$[\mathrm{mm}]$		
Model	A	B	\mathbf{H}
LEHZ10(L)K2-4B \square	3	5.7	2.9
LEHZ16(L)K2-6B \square	4	7	3.4
LEHZ20(L)K2-10B \square	5	9	4.5
LEHZ25(L)K2-14B \square	6	12	5.5
LEHZ32K2-22B \square	7	14	6.6
LEHZ40K2-30B \square	9	17	9

Flat Fingers (C)

Model	A	B	C	D	F	G		J	K	MM	L	W	Weight [g]
						When opened	When closed						
LEHZ10K2-4C \square	2.45	6	5.2	10.9	2	$5.4{ }_{-0.2}^{0}$	$1.4{ }_{-0.2}^{0}$	4.45	$2 \mathrm{H} 9^{+0.025}$	M2.5 x 0.45	5	$5-0.05$	165
LEHZ10LK2-4C \square													135
LEHZ16K2-6C \square	3.05	8	8.3	14.1	2.5	$7.4{ }_{-0.2}^{0}$	$1.4{ }_{-0.2}^{0}$	5.8	$2.5 \mathrm{H} 9^{+0.025}$	M3 x 0.5	6	$8{ }_{-0.05}^{0}$	220
LEHZ16LK2-6C \square													190
LEHZ20K2-10C \square	3.95	10	10.5	17.9	3	11.6-0.2	$1.6-0.2$	7.45	$3 \mathrm{H} 9^{+0.025}$	M4 x 0.7	8	$10_{-0.05}^{0}$	430
LEHZ20LK2-10C \square													365
LEHZ25K2-14C \square	4.9	12	13.1	21.8	4	16-0.2	$2_{-0.2}^{0}$	8.9	$4 \mathrm{H} 9^{+0.030}$	M5 x 0.8	10	$12_{-0.05}^{0}$	575
LEHZ25LK2-14C \square													510
LEHZ32K2-22C \square	7.3	20	18	34.6	5	25-0.2	$3_{-0.2}^{0}$	14.8	$5 \mathrm{H9} 9_{0}^{+0.030}$	M6 x 1	12	15-0.05	1145
LEHZ40K2-30C \square	8.7	24	22	41.4	6	33-0.2	$3_{-0.2}^{0}$	17.7	$6 \mathrm{H} 9_{0}^{+0.030}$	M8 $\times 1.25$	16	$18{ }_{-0.05}^{0}$	1820

Model Selection

LEHZJ Series >p. 883

Selection Procedure

Check the gripping force. Step 2 Check the gripping point and overhang.

Check the external force on fingers.

Step 1 Check the gripping force.

Check the
conditions.
:---:
required gripping force.
:---:
gripping force graph.
:---:
pushing speed.

Example

Workpiece mass: 0.1 kg

Guidelines for the selection of the gripper

 with respect to workpiece mass- Although conditions differ according to the workpiece shape and the coefficient of friction between the attachments and the workpiece, select a model that can provide a gripping force of 10 to 20 times*1 the workpiece weight, or more.
*1 For details, refer to the calculation of required gripping force.
- If high acceleration or impact forces are encountered during motion, a further margin of safety should be considered.
Example) When it is desired to set the gripping force at 20 times or more above the workpiece weight.
Required gripping force
$=0.1 \mathrm{~kg} \times 20 \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \approx 19.6 \mathrm{~N}$ or more

Pushing force: 70\%
Pushing force is one of the values of step data that is input into the controller.
Gripping point distance: 30 mm

LEHZJ20

When the LEHZJ20 is selected.

- Gripping force can be found to be 27 N from the intersection point of gripping point distance $L=30$ mm and pushing force of 70%.
- Gripping force is 27.6 times greater than the workpiece weight, and therefore satisfies a gripping force setting value of 20 times or more.

Pushing speed: $30 \mathrm{~mm} / \mathrm{s}$

Calculation of required gripping force

When gripping a workpiece as in the figure to the left, and with the following definitions

F: Gripping force [N]
μ : Coefficient of friction between the attachments and the workpiece
m : Workpiece mass [kg]
g : Gravitational acceleration ($=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
mg: Workpiece weight [N]
the conditions under which the workpiece
will not drop are
$2 \times \mu \mathrm{F}>\mathrm{mg}$
\bar{T}
and therefore, $F>\frac{\mathbf{m g}}{2 \times \mu}$
With " a " representing the margin,
"F" is determined by the following formula:

$$
\mathbf{F}=\frac{\mathrm{mg}}{2 \times \mu} \times \mathbf{a}
$$

"Gripping force at least 10 to 20 times the workpiece weight"

- The " 10 to 20 times or more of the workpiece weight" recommended by SMC is calculated with a margin of "a" $=4$, which allows for impacts that occur during normal transportation, etc.

- Pushing speed is satisfied at the point where 70% of the pushing force and $30 \mathrm{~mm} / \mathrm{s}$ of the pushing speed cross.
* Confirm the pushing speed range from the determined pushing force [\%].
<Reference>Coefficient of friction μ (depends on the
operating environment, contact pressure, etc.)
Coefficient of friction μ Attachment - Material of workpieces (guideline)

0.1	Metal (surface roughness Rz3.2 or less)
0.2	Metal
0.2 or more	Rubber, Resin, etc.

* - Even in cases where the coefficient of friction is greater than $\mu=0.2$, for reasons of safety, select a gripping force which is at least 10 to 20 times greater than the workpiece weight, as recommended by SMC.
- If high acceleration or impact forces are encountered during motion, a further margin should be considered.

Selection Procedure

Step 1 Check the gripping force: LEHZJ Series

- Indication of gripping force

The gripping force shown in the graphs below is expressed as " F ", which is the gripping force of one finger, when both fingers and attachments are in full contact with the workpiece as shown in the figure below.

External Gripping State

* Pushing force is one of the values of

Basic step data that is input into the controller.

LEHZJ10

LEHZJ16

- Set the workpiece gripping point " L " so that it is within the range shown in the figure below.

Internal Gripping State

Compact

* Pushing force is one of the values of step data that is input into the controller.

LEHZJ10L

LEHZJ16L

Selection Procedure

Step 1 Check the gripping force: LEHZJ Series

LEHZJ25

Pushing force is one of the values of step data that is input into the controller.

LEHZJ20L

LEHZJ25L

Selection of Pushing Speed

- Set the [Pushing force] and [Trigger level] within the range shown in the figure below.

Basic

Compact

LEHZJ10L, LEHZJ16L

LEHZJ20L, LEHZJ25L

Selection Procedure

Step 2 Check the gripping point and overhang: LEHZJ Series

- Decide the gripping position of the workpiece so that the amount of overhang " H " stays within the range shown in the figure below.
- If the gripping position is out of the limit, it may shorten the life of the electric gripper.

* Pushing force is one of the values of

Basic step data that is input into the controller.

LEHZJ10

LEHZJ16

LEHZJ20

Internal Gripping State

* Pushing force is one of the values of

Compact
LEHZJ10L

LEHZJ16L

LEHZJ20L

LEHZJ Series

Selection Procedure

Step 2 Check the gripping point and overhang: LEHZJ Series

* Pushing force is one of the values of step data that is input into the controller.

LEHZJ25

* Pushing force is one of the values of step data that is input into the controller.

LEHZJ25L

Selection Procedure

Step 3 Check the external force on fingers: LEHZJ Series

Fv: Allowable vertical load

Mp: Pitch moment

My: Yaw moment

Mr: Roll moment

H, L: Distance to the point at which the load is applied [mm]

Model	Allowable vertical load FV [N]	Static allowable moment		
		Pitch moment: Mp [N•m]	Yaw moment: My [N•m]	Roll moment: Mr [N•m]
LEHZJ10(L)K2-4	58	0.26	0.26	0.53
LEHZJ16(L)K2-6	98	0.68	0.68	1.36
LEHZJ20(L)K2-10	147	1.32	1.32	2.65
LEHZJ25(L)K2-14	255	1.94	1.94	3.88

* Values for load in the table indicate static values.

Calculation of allowable external force (when moment load is applied)	Calculation example
$\text { Allowable load } \mathbf{F}[\mathrm{N}]=\frac{\mathbf{M} \text { (Static allowable moment) }[\mathrm{N} \cdot \mathrm{~m}]}{\mathbf{L} \times 1 \mathbf{1 0}^{-3} * 1}$	When a static load of $f=10 \mathrm{~N}$ is operating, which applies pitch moment to point $\mathrm{L}=30 \mathrm{~mm}$ from the LEHZJ16K2-6 guide. Therefore, it can be used. $\begin{aligned} & \text { Allowable load } F=\frac{0.68}{30 \times 10^{-3}} \\ &=22.7[\mathrm{~N}] \\ & \text { Load } f=10[\mathrm{~N}]<22.7[\mathrm{~N}] \end{aligned}$

Gripper 2-Finger Type With Dust Cover

 LEHZJ Series LEHZJ10,16, 20, 25* For details, refer to page 1343 and onward.

(9) Actuator cable type/length*2

Standard cable [m]		Robotic cable			[m
Nil	None	R1	1.5	RA	10*1
S1	1.5	R3	3	RB	15*1
S3	3	R5	5	RC	20*1
S5	5	R8	8*1		

Gripper

10 Controller

Nil	Without controller
C $\square \square \square$	With controller

Symbol	Type	Applicable interface
Nil	Without accessory	-
S	Straight type communication plug connector	DeviceNet ${ }^{\text {® }}$
T	T-branch type communication plug connector	CC-Link Ver. 1.10
1	I/O cable (1.5 m)	Parallel input (NPN) Parallel input (PNP)
3	I/O cable (3 m)	
5	I/O cable (5 m)	

$L E C \square$ Series (For details, refer to page 835.)

	r/Driver type*3	
Nil	Without controller/driver	
1N	LECP1 (Programless type)	NPN
1P		PNP
AN	LECPA*4 (Pulse input type)	NPN
AP		PNP

11 I/O cable length ${ }^{* 5}$

$\mathbf{N i l}$	Without cable (Without communication plug connector)
$\mathbf{1}$	1.5 m
$\mathbf{3}$	$3 \mathrm{~m}^{* 6}$
$\mathbf{5}$	$5 \mathrm{~m}^{* 6}$

12 Controller/Driver mounting

Nil	Screw mounting
D	DIN rail*7

*1 Produced upon receipt of order (Robotic cable only)
*2 The standard cable should only be used on fixed parts. For use on moving parts, select the robotic cable. Refer to page 1092 if only the actuator cable is required.
*3 For details on controllers/drivers and compatible motors, refer to the compatible controllers/drivers on the next page.
*4 When pulse signals are open collector, order the current limiting resistor (LEC-PA-R- \square) on page 1062 separately.
*5 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 1047 (For LECP1) or page 1062 (For LECPA) if an I/O cable is required.
*6 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector
*7 The DIN rail is not included. It must be ordered separately.
*8 Select "Nil" for anything other than DeviceNet ${ }^{\circledR}$, CC-Link, or parallel input.
Select "Nil," "S," or "T" for DeviceNet ${ }^{\circledR}$ or CC-Link.
Select "Nil," "1," "3," or "5" for parallel input.

\triangle Caution

[CE/UKCA-compliant products]

(1) EMC compliance was tested by combining the electric actuator LEH series and the controller LEC/JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
[UL-compliant products (For the LEC series)]
When compliance with UL is required, the electric actuator and controller/ driver should be used with a UL1310 Class 2 power supply.

The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.

<Check the following before use.>

(1) Check the actuator label for the model number. This number should match that of the controller/driver.
(2) Check that the Parallel I/O configuration matches (NPN or PNP).

* Refer to the Operation Manual for using the products. Please download it via our website: https://www.smcworld.com

LEHZJ Series

Incremental (Step Motor 24 VDC)

Compatible Controllers/Drivers

	Step data input type	Programless type	Pulse input type
Type			

Type	EtherCAT direct input type	EtherCAT direct input type with STO sub-function	EtherNet//PTM direct input type	EtherNet/IPTM direct input type with STO sub-function	PROFINET direct input type	PROFINET direct input type with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input type	IO-Link direct input type	10-Link direct input type with STO sub-function	CC-Link direct input type
Series	JXCE1	JXCEF	JXC91	JXC9F	JXCP1	JXCPF	JXCD1	JXCL1	JXCLF	JXCM1
Features	EtherCAT direct input	EtherCAT direct input with STO sub-function	EtherNet//PTM direct input	EtherNetIIPTM direct input with STO sub-function	PROFINET direct input	PROFINET direct input with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input	IO-Link direct input	IO-Link direct input with STO sub-function	CC-Link direct input
Compatible motor	Step motor (Servo/24 VDC)									
Max. number of step data	64 points									
Power supply voltage	24 VDC									
Reference page	1063									

Specifications

Model			LEHZJ10	LEHZJ16	LEHZJ20	LEHZJ25
	Open and close stroke/both sides [mm]		4	6	10	14
	Lead [mm]		$\begin{aligned} & 251 / 73 \\ & (3.438) \end{aligned}$	$\begin{aligned} & 249 / 77 \\ & (3.234) \end{aligned}$	$\begin{aligned} & 246 / 53 \\ & (4.642) \end{aligned}$	$\begin{aligned} & 243 / 48 \\ & (5.063) \end{aligned}$
	Gripping force$[\mathrm{N}]^{* 1 * 3}$	Basic	6 to 14		16 to 40	
		Compact	3 to 6	4 to 8		
	Open and close speed/Pushing speed [mm/s]*2 ${ }^{\text {*3 }}$		5 to 80/5 to 50		5 to 100/5 to 50	
	Drive method		Slide screw + Slide cam			
	Finger guide type		Linear guide (No circulation)			
	Repeated length measurement accuracy [mm] ${ }^{* 4}$		± 0.05			
	Finger backlash/ one side [mm] ${ }^{* 5}$		0.25 or less			
	Repeatability [mm]*6		± 0.02			
	Positioning repeatability/one side [mm]		± 0.05			
	Lost motion/one side [mm]*7		0.25 or less			
	Impact/Vibration resistance [m/s $\left.{ }^{2}\right]^{* 8}$		150/30			
	Max. operating frequency [C.P.M]		60			
	Operating temperature range [${ }^{\mathrm{C}}$]		5 to 40			
	Operating humidity range [\%RH]		90 or less (No condensation)			
	Enclosure		Equivalent to IP50			
	Weight [g]	Basic	170	230	440	610
		Compact	140	200	375	545
	Motor size		$\square 20$		$\square 28$	
	Motor type		Step motor (Servo/24 VDC)			
	Encoder		Incremental			
	Power supply voltage [V]		24 VDC $\pm 10 \%$			
	Power [W]*9	Basic	Max. power 19		Max. power 51	
		Compact	Max. power 14		Max. power 42	

*1 Gripping force should be from 10 to 20 times the workpiece weight. Moving force should be 150% when releasing the workpiece. Gripping force accuracy should be $\pm 30 \%$ (F.S.) for LEHZJ10/16 and $\pm 25 \%$ (F.S.) for LEHZJ20/25. Gripping with heavy attachment and fast pushing speed, may not reach the product specification. In this case, decrease the weight and lower the pushing speed.
*2 Pushing speed should be set within the range during pushing (gripping) operations. Otherwise, it may cause a malfunction. The open/close speed and pushing speed are for both fingers. The speed for one finger is half this value.
*3 The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
*4 Repeated length measurement accuracy means dispersion (value on the controller monitor) when the workpiece is repeatedly held in the same position.
*5 There will be no influence of backlash during pushing (gripping) operations. Make the stroke longer for the amount of backlash when opening.
*6 Repeatability means the variation of the gripping position (workpiece position) when gripping operations are repeatedly performed by the same sequence for the same workpiece
7 A reference value for correcting errors in reciprocal operation which occur during positioning operations
*8 Impact resistance: No malfunction occurred when the gripper was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the gripper in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the gripper in the initial state.)
*9 Indicates the max. power during operation (including the controller) This value can be used for the selection of the power supply.

How to Mount

a) When using the thread on the side of the body

b) When using the thread on the mounting plate

c) When using the thread on the back of the body

Construction

LEHZJ Series

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
2	Motor plate	Aluminum alloy	Anodized
3	Guide ring	Aluminum alloy	
4	Slide nut	Stainless steel	Heat treatment + Special treatment
5	Slide bolt	Stainless steel	Heat treatment + Special treatment
6	Needle roller	High carbon chromium bearing steel	
$\mathbf{7}$	Needle roller	High carbon chromium bearing steel	
$\mathbf{8}$	Body plate	Aluminum alloy	Anodized
		CR	Chloroprene rubber
9	Dust cover	FKM	Fluororubber
		Si	Silicone rubber
10	Finger assembly	-	Silicone rubber
11	Encoder dust cover	Si	
12	Lever	Special stainless steel	
13	Step motor (Servo/24 VDC)	-	

Replacement Parts

No.	Description			LEHZJ10	LEHZJ16	LEHZJ20	LEHZJ25
9	Dust cover	Material	CR	MHZJ2-J10	MHZJ2-J16	MHZJ2-J20	MHZJ2-J25
			FKM	MHZJ2-J10F	MHZJ2-J16F	MHZJ2-J20F	MHZJ2-J25F
			Si	MHZJ2-J10S	MHZJ2-J16S	MHZJ2-J20S	MHZJ2-J25S
10	Finger assembly			MHZJ-AA1002	MHZJ-AA1602	MHZJ-AA2002	MHZJ-AA2502

[^1]
Dimensions

LEHZJ10(L)K2-4

	$[\mathrm{mm}]$	
Model	L	$\mathbf{(L} 1)$
LEHZJ10K2-4 \square	109.8	(62.7)
LEHZJ10LK2-4 \square	93.2	(46.1)

LEHZJ16(L)K2-6

$[\mathrm{mm}]$		
Model	\mathbf{L}	$\left(\mathrm{L}_{1}\right)$
LEHZJ16K2-6	118.6	(62.7)
LEHZJ16LK2-6	102	(46.1)

LEHZJ Series

Incremental (Step Motor 24 VDC)

Dimensions

LEHZJ20(L)K2-10

$[\mathrm{mm}]$		
Model	\mathbf{L}	$\mathbf{(L 1)}$
LEHZJ2OK2-10 \square	135.7	(64.8)
LEHZJ20LK2-10 \square	121.7	(50.8)

LEHZJ25(L)K2-14

$[\mathrm{mm}]$		
Model	\mathbf{L}	$\mathbf{(L \mathbf { 1 })}$
LEHZJ25K2-14 \square	146.7	(64.8)
LEHZJ25LK2-14 \square	132.7	(50.8)

Selection Procedure

Check the gripping force. Step 2 Check the gripping point and overhang.

Check the external force on fingers.

Step 1 Check the gripping force.

Select the pushing speed.

Example

Workpiece mass: 0.5 kg

Guidelines for the selection of the gripper

 with respect to workpiece mass- Although conditions differ according to the workpiece shape and the coefficient of friction between the attachments and the workpiece, select a model that can provide a gripping force of 10 to 20 times*1 the workpiece weight, or more.
*1 For details, refer to the model selection illustration.
- If high acceleration or impact forces are encountered during motion, a further margin of safety should be considered.
Example) When it is desired to set the gripping force at 20 times or more above the workpiece weight.
Required gripping force
$=0.5 \mathrm{~kg} \times 20 \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \approx 98 \mathrm{~N}$ or more

Pushing force: 100\%

Gripping point distance: 30 mm

Pushing speed: $20 \mathrm{~mm} / \mathrm{s}$

Calculation of required gripping force

When gripping a workpiece as in the figure to the left, and with the following definitions, F: Gripping force [N]
μ : Coefficient of friction between the attachments and the workpiece
m : Workpiece mass [kg]
$\mathrm{g}:$ Gravitational acceleration $\left(=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
$\mathrm{mg}:$ Workpiece weight $[\mathrm{N}]$
the conditions under which the workpiece will not drop are
$2 \mathrm{x} \mu \mathrm{F}>\mathrm{mg}$
$\overline{\bar{L}}$
and therefore, $\mathbf{F}>\frac{\mathbf{m g}}{\mathbf{2} \mathbf{x} \mu}$
With "a" representing the margin, " F " is determined by the following formula:

$$
\mathbf{F}=\frac{\mathrm{mg}}{2 \mathbf{x} \mu} \times a
$$

"Gripping force at least 10 to 20 times the workpiece weight"

- The "10 to 20 times or more of the workpiece weight" recommended by SMC is calculated with a margin of "a" $=4$, which allows for impacts that occur during normal transportation, etc.

When the LEHF32 is selected.

- Gripping force can be found to be 108 N from the intersection point of gripping point distance $\mathrm{L}=30$ mm and pushing force of 100%.
- Gripping force is 22 times greater than the workpiece weight, and therefore satisfies a gripping force setting value of 20 times or more.

- Pushing speed is satisfied at the point where 100% of the pushing force and $20 \mathrm{~mm} / \mathrm{s}$ of the pushing speed cross.
* Confirm the pushing speed range from the determined pushing force [\%].
<Reference> Coefficient of friction μ (depends on the operating environment, contact pressure, etc.)
Coefficient of friction μ Attachment - Material of workpieces (guideline)

0.1	Metal (surface roughness Rz3.2 or less)
0.2	Metal
0.2 or more	Rubber, Resin, etc.

* - Even in cases where the coefficient of friction is greater than $\mu=0.2$, for reasons of safety, select a gripping force which is at least 10 to 20 times greater than the workpiece weight, as recommended by SMC.
- If high acceleration or impact forces are encountered during motion, a further margin should be considered.

Selection Procedure

Step 1 Check the gripping force: LEHF Series

- Indication of gripping force

Gripping force shown in the graphs below is expressed as " F ", which is the gripping force of one finger, when both fingers and attachments are in full contact with the workpiece as shown in the figure below.

- Set the workpiece gripping point "L" so that it is within the range shown in the figure below.

Internal Gripping State

LEHF32

LEHF40

* Pushing force is one of the values of step data that is input into the controller.

Selection of Pushing Speed

- Set the [Pushing force] and the [Trigger LV] within the range shown in the figure below.

LEHF Series

Battery-less Absolute (Step Motor 24 VDC)

Selection Procedure

Step 2 Check the gripping point and overhang: LEHF Series

- Decide the gripping position of the workpiece so that the amount of overhang " H " stays within the range shown in the figure below.
- If the gripping position is out of the limit, it may shorten the life of the electric gripper.

[^2]
Selection Procedure

Step 3 Check the external force on fingers: LEHF Series

H, L: Distance to the point at which the load is applied [mm]

Model	Allowable vertical load Fv [N]	Static allowable moment		
		Pitch moment: Mp [N•m]	Yaw moment: My [N•m]	Roll moment: Mr [N.m]
LEHF32EK2-■	176	1.4	1.4	2.8
LEHF40EK2-■	294	2	2	4

* Values for load in the table indicate static values.

Calculation of allowable external force (when moment load is applied)	Calculation example
$\text { Allowable load } F[\mathrm{~N}]=\frac{M \text { (Static allowable moment })[\mathrm{N} \cdot \mathrm{~m}]}{\mathbf{L} \times 10^{-3} * 1}$	When a static load of $f=10 \mathrm{~N}$ is operating, which applies pitch moment to point $L=30 \mathrm{~mm}$ from the LEHF20K2- \square guide. Therefore, it can be used. $\begin{aligned} & \text { Allowable load } F=\frac{0.68}{30 \times 10^{-3}} \\ &=22.7[\mathrm{~N}] \\ & \text { Load } f=10[\mathrm{~N}]<22.7[\mathrm{~N}] \end{aligned}$

Gripper 2-Finger Type

LEHF Series

Model Selection

LEHF series $>$ p. 855

Selection Procedure

Step 1 Check the gripping force.

Calculate the
required gripping force.

Select the model from gripping force graph.

Select the pushing speed.

Guidelines for the selection of the gripper

 with respect to workpiece mass- Although conditions differ according to the workpiece shape and the coefficient of friction between the attachments and the workpiece, select a model that can provide a gripping force of 10 to 20 times*1 the workpiece weight, or more.
*1 For details, refer to the model selection illustration.
- If high acceleration or impact forces are encountered during motion, a further margin of safety should be considered.
Example) When it is desired to set the gripping force at 20 times or more above the workpiece weight.
Required gripping force
$=0.1 \mathrm{~kg} \times 20 \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \approx 19.6 \mathrm{~N}$ or more

When the LEHF20 is selected.

- Gripping force can be found to be 26 N from the intersection point of gripping point distance $\mathrm{L}=30$ mm and pushing force of 100%.
- Gripping force is 26.5 times greater than the workpiece weight, and therefore satisfies a gripping force setting value of 20 times or more.

- Pushing speed is satisfied at the point where 100% of the pushing force and $20 \mathrm{~mm} / \mathrm{s}$ of the pushing speed cross.
* Confirm the pushing speed range from the determined pushing force [\%].
<Reference>Coefficient of friction μ (depends on the operating environment, contact pressure, etc.)

| Coefficient of friction μ | Attachment - Material of workpieces (guideline) |
| :---: | :---: | :---: | :---: |

0.1	Metal (surface roughness Rz3.2 or less)
0.2	Metal
0.2 or more	Rubber, Resin, etc.

* - Even in cases where the coefficient of friction is greater than $\mu=0.2$, for reasons of safety, select a gripping force which is at least 10 to 20 times greater than the workpiece weight, as recommended by SMC.
- If high acceleration or impact forces are encountered during motion, a further margin should be considered.

Selection Procedure

Step 1 Check the gripping force: LEHF Series

- Indication of gripping force

Gripping force shown in the graphs below is expressed as " F ", which is the gripping force of one finger, when both fingers and attachments are in full contact with the workpiece as shown in the figure below.

- Set the workpiece gripping point "L" so that it is within the range shown in the figure below.

Internal Gripping State

LEHF10

LEHF40

LEHF20

LEHF32

Selection of Pushing Speed

- Set the [Pushing force] and the [Trigger LV] within the range shown in the figure below.

[^3]
LEHF Series

Incremental (Step Motor 24 VDC)

Selection Procedure

Step 2 Check the gripping point and overhang: LEHF Series

- Decide the gripping position of the workpiece so that the amount of overhang " H " stays within the range shown in the figure below.
- If the gripping position is out of the limit, it may shorten the life of the electric gripper.

External Gripping State

LEHF10

LEHF32

Internal Gripping State

LEHF20

LEHF40

* Pushing force is one of the values of step data that is input into the controller.

Selection Procedure

Step 3 Check the external force on fingers: LEHF Series

H, L: Distance to the point at which the load is applied [mm]

Model	Allowable vertical load Fv [N]	Static allowable moment		
		Pitch moment: Mp [N•m]	Yaw moment: My [N•m]	Roll moment: Mr [N•m]
LEHF10K2- \square	58	0.26	0.26	0.53
LEHF20K2- \square	98	0.68	0.68	1.4
LEHF32K2- \square	176	1.4	1.4	2.8
LEHF40K2- \square	294	2	2	4

* Values for load in the table indicate static values.

Calculation of allowable external force (when moment load is applied)	Calculation example
$\text { Allowable load } \mathbf{F}[\mathrm{N}]=\frac{\mathbf{M} \text { (Static allowable moment) }[\mathrm{N} \cdot \mathrm{~m}]}{\mathbf{L} \times 10^{-3} * 1}$	When a static load of $f=10 \mathrm{~N}$ is operating, which applies pitch moment to point $\mathrm{L}=30 \mathrm{~mm}$ from the LEHF20K2- \square guide. Therefore, it can be used. $\begin{aligned} & \text { Allowable load } F=\frac{0.68}{30 \times 10^{-3}} \\ &=22.7[\mathrm{~N}] \\ & \text { Load } f=10[\mathrm{~N}]<22.7[\mathrm{~N}] \end{aligned}$

Gripper

How to Order

For details on controllers, refer to the next page.
Stroke [mm]

Stroke/both sides		Size
Basic	Long stroke	
$\mathbf{3 2}$	$\mathbf{6 4}$	32
$\mathbf{4 0}$	$\mathbf{8 0}$	40

6 Motor cable entry

(7) Actuator cable type/length

Robotic cable

Robotic cable			
Nil	None	R8	$8^{* 1}$
R1	1.5	RA	$10^{* 1}$
R3	3	RB	$15^{* 1}$
R5	5	RC	$20^{* 1}$

8 Controller

*1 Produced upon receipt of order
*2 The DIN rail is not included. It must be ordered separately.
*3 Select "Nil" for anything other than DeviceNet ${ }^{\circledR}$, CC-Link, or parallel input.
Select "Nil," "S," or "T" for DeviceNett ${ }^{\circledR}$ or CC-Link.
Select "Nil," "1," "3," or " 5 " for parallel input.

\triangle Caution

[CE/UKCA-compliant products]

EMC compliance was tested by combining the electric actuator LEH series and the controller JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.

[Precautions relating to differences in controller versions]

When the JXC series is to be used in combination with the battery-less absolute encoder, use a controller that is version V3.4 or S3.4 or higher.
For details, refer to pages 1077 and 1078.
[UL certification]
The JXC series controllers used in combination with electric actuators are UL certified.

The actuator and controller are sold as a package.
Confirm that the combination of the controller and actuator is correct.
<Check the following before use.>
(1) Check the actuator label for the model number.

This number should match that of the controller.
(2) Check that the Parallel I/O configuration matches (NPN or PNP).

LEHF32EK2-64

* Refer to the Operation Manual for using the products.

Please download it via our website: https://www.smcworld.com

Type	Step data input type	EtherCAT direct input type	EtherCAT direct input type with STO sub-function	EtherNet//PTM direct input type	EtherNetIIPTM direct input type with STO sub-function	PROFINET direct input type	PROFINET direct input type with STO sub.function	DeviceNet ${ }^{\circledR}$ direct input type	IO-Link direct input type	10-Link direct input type with STO sub-function	CC-Link direct input type
Series	$\begin{aligned} & \text { JXC51 } \\ & \text { JXC61 } \\ & \hline \end{aligned}$	JXCE1	JXCEF	JXC91	JXC9F	JXCP1	JXCPF	JXCD1	JXCL1	JXCLF	JXCM1
Features	Parallel I/O	EtherCAT direct input	EtherCAT direct input with STO sub-function	EtherNet/IPTM direct input	$\begin{array}{\|c} \hline \text { Ethen:Netlipud direct } \\ \text { input with STO } \\ \text { sub-function } \end{array}$	PROFINET direct input	$\begin{array}{\|c\|} \hline \text { PROFINET direct } \\ \text { input with STO } \\ \text { sub-function } \end{array}$	DeviceNet ${ }^{\text {® }}$ direct input	IO-Link direct input	IO-Link direct input with STO sub-function	CC-Link direct input
Compatible motor	Battery-less absolute (Step motor 24 VDC)										
Max. number of step data	64 points										
Power supply volage	24 VDC										
Reference page	1017	1063									

Specifications

Battery-less Absolute (Step Motor 24 VDC)

Model			LEHF32E	LEHF40E
	Open and close stroke/both sides [mm]	Basic	32	40
		Long stroke	64	80
	Lead [mm]		$\begin{gathered} 70 / 16 \\ (4.375) \end{gathered}$	$\begin{gathered} 70 / 16 \\ (4.375) \end{gathered}$
	Gripping force [N$]^{* 1 * 3}$		48 to 120	72 to 180
	Open and close speed/Pushing speed [mm/s] ${ }^{* 2 * 3}$		5 to 100/5 to 30	
	Drive method		Slide screw + Belt	
	Finger guide type		Linear guide (No circulation)	
	Repeated length measurement accuracy [mm]*4		± 0.05	
	Finger backlash/one side [mm]*5		0.5 or less	
	Repeatability [mm]*6		± 0.05	
	Positioning repeatability/one side [mm]		± 0.1	
	Lost motion/one side [mm]*7		0.3 or less	
	Impact/Vibration resistance [m/s $\left.{ }^{2}\right]^{* 8}$		150/30	
	Max. operating frequency [C.P.M]		60	
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40	
	Operating humidity range [\%RH]		90 or less (No condensation)	
	Enclosure		IP20	
	Weight [g]	Basic	1625	1980
		Long stroke	1970	2500
	Motor size		$\square 42$	
	Motor type		Battery-less absolute (Step motor 24 VDC)	
	Encoder		Battery-less absolute	
	Power supply voltage [V]		24 VDC $\pm 10 \%$	
	Power [W]*9		Max. power 57	Max. power 61

*1 Gripping force should be from 10 to 20 times the workpiece weight. Moving force should be 150% when releasing the workpiece. Gripping force accuracy should be $\pm 20 \%$ (F.S.) for LEHF32/40. Gripping with heavy attachment and fast pushing speed, may not reach the product specification. In this case, decrease the weight and lower the pushing speed.
*2 Pushing speed should be set within the range during pushing (gripping) operations. Otherwise, it may cause a malfunction. The open/close speed and pushing speed are for both fingers. The speed for one finger is half this value.
*3 The speed and force may change depending on the cable length, load, and mounting conditions.
Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
*4 Repeated length measurement accuracy means dispersion (value on the controller monitor) when the workpiece is repeatedly held in the same position.
*5 There will be no influence of backlash during pushing (gripping) operations. Make the stroke longer for the amount of backlash when opening.
*6 Repeatability means the variation of the gripping position (workpiece position) when gripping operations are repeatedly performed by the same sequence for the same workpiece.
*7 A reference value for correcting errors in reciprocal operation which occur during positioning operations
*8 Impact resistance: No malfunction occurred when the gripper was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the gripper in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the gripper in the initial state.
*9 Indicates the max. power during operation (including the controller)
This value can be used for the selection of the power supply.

How to Mount

a) When using the thread on the body

b) When using the thread on the mounting plate
c) When using the thread on the back of the body

Construction

LEHF Series

Component Parts

No.	Description	Material	Note
1	Body	Aluminum alloy	Anodized
2	Side plate A	Aluminum alloy	Anodized
3	Side plate B	Aluminum alloy	Anodized
4	Slide shaft	Stainless steel	Heat treatment + Special treatment
5	Slide bushing	Stainless steel	
6	Slide nut	Stainless steel	Heat treatment + Special treatment
7	Slide nut	Stainless steel	Heat treatment + Special treatment
8	Fixed plate	Stainless steel	
9	Motor plate	Carbon steel	
10	Pulley A	Aluminum alloy	
11	Pulley B	Aluminum alloy	
12	Bearing stopper	Aluminum alloy	
13	Rubber bushing	NBR	
14	Bearing	-	
15	Belt	-	
16	Flange	-	
17	Finger assembly	-	
18	Battery-less absolute (Step motor 24 VDC)		

LEHF Series

Dimensions

*1 This is the range within which the fingers can move when it returns to origin. Make sure that workpieces mounted on the fingers do not interfere with other workpieces or the facilities around the fingers.
*2 Secure the motor cable so that the cable is not repeatedly bent.

LEHF32EK2-64: Long Stroke

(Motor cable entry: (Motor cable entry:

*1 This is the range within which the fingers can move when it returns to origin. Make sure that workpieces mounted on the fingers do not interfere with other workpieces or the facilities around the fingers.
*2 Secure the motor cable so that the cable is not repeatedly bent.

Dimensions

LEHF40EK2-40: Basic

*1 This is the range within which the fingers can move when it returns to origin. Make sure that workpieces mounted on the fingers do not interfere with other workpieces or the facilities around the fingers.
*2 Secure the motor cable so that the cable is not repeatedly bent.

LEHF40EK2-80: Long Stroke

*1 This is the range within which the fingers can move when it returns to origin. Make sure that workpieces mounted on the fingers do not interfere with other workpieces or the facilities around the fingers.
*2 Secure the motor cable so that the cable is not repeatedly bent.

Gripper

 2-Finger Type| 1 Size |
| :---: |
| 10 |
| 20 |
| 32 |
| 40 |

Lead
K \quad Basic

6 Actuator cable type/length*2
Standard cable [m] Robotic cable [m]

Nil	None
S1	1.5
S3	3
S5	5

Robotic cable

R1	1.5	RA	$\left.10^{* 1}\right]$	
R3	3	RB	$15^{* 1}$	
R5	5	RC	$20^{* 1}$	
R8	$8^{* 1}$			

$L E C \square$ Series (For details, refer to page 857.)

7 Controller/Driver type ${ }^{* 3}$

Nil	Without controller/driver	
1N	LECP1	NPN
1P	(Programless type)	PNP
AN	LECPA*4	
(Pulse input type)	NPN	
	AP	

8 I/O cable length ${ }^{* 5}$
$\mathbf{N i l}$ Without cable (Without communication plug connector) $\mathbf{1}$ 1.5 m $\mathbf{3}$ $3 \mathrm{~m}^{* 6}$ $\mathbf{5}$ $5 \mathrm{~m}^{* 6}$

Controller/Driver mounting

Nil	Screw mounting
D	DIN rail*7

*1 Produced upon receipt of order (Robotic cable only)
*2 The standard cable should only be used on fixed parts. For use on moving parts, select the robotic cable. Refer to page 1092 if only the actuator cable is required.
*3 For details on controllers/drivers and compatible motors, refer to the compatible controllers/drivers on the next page.
*4 When pulse signals are open collector, order the current limiting resistor (LEC-PA-R- \square) on page 1062 separately.
*5 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 1047 (For LECP1) or page 1062 (For LECPA) if an I/O cable is required
*6 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collecto
*7 The DIN rail is not included. It must be ordered separately.
*8 Select "Nil" for anything other than DeviceNet ${ }^{\circledR}$, CC-Link, or parallel input.
Select "Nil," "S," or "T" for DeviceNet ${ }^{\circledR}$ or CC-Link.
Select "Nil," "1," "3," or " 5 " for parallel input.

\triangle Caution

[CE/UKCA-compliant products]

(1) EMC compliance was tested by combining the electric actuator LEH series and the controller LEC/JXC series
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole
[UL-compliant products (For the LEC series)]
When compliance with UL is required, the electric actuator and controller/ driver should be used with a UL1310 Class 2 power supply.

The actuator and controller/driver are sold as a package.
Confirm that the combination of the controller/driver and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for the model number. This number should match that of the controller/driver.
(2) Check that the Parallel I/O configuration matches (NPN or PNP).

* Refer to the Operation Manual for using the products. Please download it via our website: https://www.smcworld.com

LEHF Series

Incremental (Step Motor 24 VDC)

Compatible Controllers/Drivers

	Step data input type	Programless type	Pulse input type
Type			

Type	EtherCAT direct input type	EtherCAT direct input type with STO sub-function	EtherNet//PTM direct input type	EtherNetIIPTM direct input type with STO sub-function	PROFINET direct input type	PROFINET direct input type with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input type	10-Link direct input type	10-Link direct input type with STO sub-function	CC-Link direct input type
Series	JXCE1	JXCEF	JXC91	JXC9F	JXCP1	JXCPF	JXCD1	JXCL1	JXCLF	JXCM1
Features	EtherCAT direct input	EtherCAT direct input with STO sub-function	EtherNet//PTM direct input	EtherNet/IPTM direct input with STO sub-function	PROFINET direct input	PROFINET direct input with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input	IO-Link direct input	IO-Link direct input with STO sub-function	CC-Link direct input
Compatible motor	Step motor (Servo/24 VDC)									
Max. number of step data	64 points									
Power supply voltage	24 VDC									
Reference page	1063									

Specifications

Model			LEHF10	LEHF20	LEHF32	LEHF40
	Open and close stroke/both sides [mm]	Basic	16	24	32	40
		Long stroke	32	48	64	80
	Lead [mm]		$\begin{gathered} 40 / 15 \\ (2.667) \end{gathered}$	$\begin{gathered} 50 / 15 \\ (3.333) \end{gathered}$	$\begin{gathered} 70 / 16 \\ (4.375) \end{gathered}$	$\begin{gathered} 70 / 16 \\ (4.375) \end{gathered}$
	Gripping force [N$]^{* 1 * 3}$		3 to 7	11 to 28	48 to 120	72 to 180
	Open and close speed/Pushing speed [mm/s]*2 *3		5 to 80/5 to 20		to $100 / 5$ to	
	Drive method			Slide scr	w + Belt	
	Finger guide type		Linear guide (No circulation)			
	Repeated length measurement accuracy [mm] ${ }^{* 4}$		± 0.05			
	Finger backlash/one side [mm]*5		0.5 or less			
	Repeatability [mm]*6		± 0.05			
	Positioning repeatability/one side [mm]		± 0.1			
	Lost motion/one side [mm]*7		0.3 or less			
	Impact/Vibration resistance [m/s ${ }^{2}$] ${ }^{* 8}$		150/30			
	Max. operating frequency [C.P.M]		60			
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40			
	Operating humidity range [\%RH]		90 or less (No condensation)			
	Enclosure		IP20			
	Weight [g]	Basic	340	610	1625	1980
		Long stroke	370	750	1970	2500
	Motor size		$\square 20$	$\square 28$	$\square 42$	
	Motor type		Step motor (Servo/24 VDC)			
	Encoder		Incremental			
	Power supply voltage [V]		24 VDC $\pm 10 \%$			
	Power [W]*9		Max. power 19	Max. power 51	Max. power 57	Max. power 61

*1 Gripping force should be from 10 to 20 times the workpiece weight. Moving force should be 150% when releasing the workpiece. Gripping force accuracy should be $\pm 30 \%$ (F.S.) for LEHF10, $\pm 25 \%$ (F.S.) for LEHF20 and $\pm 20 \%$ (F.S.) for LEHF32/40. Gripping with heavy attachment and fast pushing speed, may not reach the product specification. In this case, decrease the weight and lower the pushing speed.
*2 Pushing speed should be set within the range during pushing (gripping) operations. Otherwise, it may cause a malfunction. The open/close speed and pushing speed are for both fingers. The speed for one finger is half this value.
*3 The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
*4 Repeated length measurement accuracy means dispersion (value on the controller monitor) when the workpiece is repeatedly held in the same position.
*5 There will be no influence of backlash during pushing (gripping) operations. Make the stroke longer for the amount of backlash when opening
*6 Repeatability means the variation of the gripping position (workpiece position) when gripping operations are repeatedly performed by the same sequence for the same workpiece.
*7 A reference value for correcting errors in reciprocal operation which occur during positioning operations
*8 Impact resistance: No malfunction occurred when the gripper was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the gripper in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the gripper in the initial state.)
*9 Indicates the max. power during operation (including the controller)
This value can be used for the selection of the power supply.

How to Mount

a) When using the thread on the body

b) When using the thread on the mounting plate
c) When using the thread on the back of the body

LEHF Series

Incremental (Step Motor 24 VDC)

Construction

LEHF Series

Component Parts

No.	Description	Material	Note
1	Body	Aluminum alloy	Anodized
2	Side plate A	Aluminum alloy	Anodized
3	Side plate B	Aluminum alloy	Anodized
4	Slide shaft	Stainless steel	Heat treatment + Special treatment
5	Slide bushing	Stainless steel	
6	Slide nut	Stainless steel	Heat treatment + Special treatment
7	Slide nut	Stainless steel	Heat treatment + Special treatment
8	Fixed plate	Stainless steel	
9	Motor plate	Carbon steel	
10	Pulley A	Aluminum alloy	
11	Pulley B	Aluminum alloy	
12	Bearing stopper	NBR	
13	Rubber bushing	-	
14	Bearing	-	
15	Belt	-	
16	Flange	-	
17	Finger assembly		
18	Step motor (Servo/24 VDC)		

Dimensions

LEHF10K2-16: Basic

LEHF10K2-32: Long Stroke

Motor cable length $\approx 280^{* 2}$ Motor cable length $\approx 230 * 2$
(Motor cable entry:
(Motor cable entry:

*1 This is the range within which the fingers can move when it returns to origin. Make sure that workpieces mounted on the fingers do not interfere with other workpieces or the facilities around the fingers.
*2 Secure the motor cable so that the cable is not repeatedly bent.

LEHF Series

Incremental (Step Motor 24 VDC)

Dimensions

LEHF20K2-48: Long Stroke

Dimensions

*1 This is the range within which the fingers can move when it returns to origin. Make sure that workpieces mounted on the fingers do not interfere with other workpieces or the facilities around the fingers.
*2 Secure the motor cable so that the cable is not repeatedly bent.

LEHF32K2-64: Long Stroke

*1 This is the range within which the fingers can move when it returns to origin. Make sure that workpieces mounted on the fingers do not interfere with other workpieces or the facilities around the fingers.
*2 Secure the motor cable so that the cable is not repeatedly bent.

LEHF Series

Incremental (Step Motor 24 VDC)

Dimensions

LEHF40K2-40: Basic
 when it returns to origin. Make sure that workpieces mounted on the fingers do not interfere with other workpieces or the facilities around the fingers.
*2 Secure the motor cable so that the cable is not repeatedly bent.

LEHF40K2-80: Long Stroke

Gripper 3-Finger Type

LEHS Series

Model Selection

Selection Procedure

Step Check the gripping force.

Check the
conditions.
:---:
Select the model from
gripping force graph.
:---:
reshing speed.

Example
 Workpiece mass: 0.1 kg

Guidelines for the selection of the gripper with respect to workpiece mass

- Although conditions differ according to the workpiece shape and the coefficient of friction between the attachments and the workpiece, select a model that can provide a gripping force of 7 to 13 times*1 the workpiece weight, or more.
*1 For details, refer to the calculation of required gripping force
- If high acceleration or impact forces are encountered during motion, a further margin of safety should be considered.
Example) When it is desired to set the gripping force at 13 times or more above the workpiece weight.
Required gripping force
$=0.1 \mathrm{~kg} \times 13 \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \approx 12.7 \mathrm{~N}$ or more
Pushing force: 70\%

Gripping point distance: 30 mm

Pushing speed: $30 \mathrm{~mm} / \mathrm{s}$

Calculation of required gripping force

When gripping a workpiece as in the figure to the left, and with the following definitions, F : Gripping force [N]
μ : Coefficient of friction between the attachments and the workpiece
m : Workpiece mass [kg]
g: Gravitational acceleration (= $9.8 \mathrm{~m} / \mathrm{s}^{2}$)
mg : Workpiece weight [N]
the conditions under which the workpiece will not drop are
$\underline{\underline{3}} \times \mu \mathrm{F}>\mathrm{mg}$
$\stackrel{\rightharpoonup}{\overline{4}}$

$$
\text { and therefore, } \mathbf{F}>\frac{\mathbf{m g}}{\mathbf{3 \times \mu}}
$$

With "a" representing the margin, " F " is determined by the following formula:

$$
\mathbf{F}=\frac{\mathbf{m g}}{3 \mathbf{x} \mu} \mathbf{x a}
$$

"Gripping force at least 7 to 13 times the workpiece weight"

- The " 7 to 13 times or more of the workpiece weight" recommended by SMC is calculated with a margin of "a" $=4$, which allows for impacts that occur during normal transportation, etc.

When $\mu=0.2$	When $\mu=0.1$
$\mathbf{F}=\frac{\mathbf{m g}}{3 \times 0.2} \times 4=6.7 \times \mathrm{mg}$	$\mathrm{F}=\frac{\mathrm{mg}}{3 \times 0.1} \times 4=13.3 \times \mathrm{mg}$
$\mathbf{7 \times \text { Workpiece weight }}$	$13 \times$ Workpiece weight

When the LEHS20 is selected.

- Gripping force can be found to be 14 N from the intersection point of gripping point distance $\mathrm{L}=30$ mm and pushing force of 70%.
- Gripping force is 14 times greater than the workpiece weight, and therefore satisfies a gripping force setting value of 13 times or more.

LEHS20

- Pushing speed is satisfied at the point where 70% of the pushing force and $30 \mathrm{~mm} / \mathrm{s}$ of the pushing speed cross.
* Confirm the pushing speed range from the determined pushing force [\%].

Coefficient of friction μ	Attachment - Material of workpieces (guideline)
0.1	Metal (surface roughness Rz3.2 or less)
0.2	Metal
0.2 or more	Rubber, Resin, etc.

* Even in cases where the coefficient of friction is greater than $\mu=0.2$, for reasons of safety, select a gripping force which is at least 7 to 13 times greater than the workpiece weight, as recommended by SMC.
- If high acceleration or impact forces are encountered during motion, a further margin should be considered.

LEHS Series

Incremental (Step Motor 24 VDC)

Selection Procedure

Step Check the gripping force: LEHS Series

- Indication of gripping force

The gripping force shown in the graphs on page 866 is expressed as " F ", which is the gripping force of one finger, when three fingers and attachments are in full contact with the workpiece as shown in the figure below.

External Gripping State

- Set the workpiece gripping point "L" so that it is within the range shown in the figure below.

F: Gripping force

F: Gripping force

Selection Procedure

Step Check the gripping force: LEHS Series

LEHS20

LEHS32

LEHS40

Compact

* Pushing force is one of the values of step data that is input into the controller.

LEHS10L

LEHS20L

Selection of Pushing Speed

- Set the [Pushing force] and the [Trigger LV] within the range shown in the figure below.

Basic

Compact

Gripper

3-Finger Type

1 Size
10
20
32
40

2 Motor size

$\mathbf{N i I}$	Basic
$\mathbf{L}^{* 1}$	Compact

Lead
K
K Basic
(4) 3-finger type
5 Stroke [mm]

Stroke/diameter	Size
$\mathbf{4}$	10
$\mathbf{6}$	20
$\mathbf{8}$	32
$\mathbf{1 2}$	40

Actuator cable type/length*3

Standard cable [m]	
Nil	None
S1	1.5
S3	3
S5	5

Robotic cable

$[\mathrm{R} 1$			
R3	1.5	RA	$10^{* 2}$
R5	3	RB	$15^{* 2}$
R8	$8^{* 2}$	RC	$20^{* 2}$

Motor cable entry

- Communication plug connector, I/O cable*9

Interface (Communication protocol/Input/Output)

Symbol	Type	Numberoiaxes, Special speciciaion	
		Standard	$\begin{gathered} \text { With STO } \\ \text { sub-function } \end{gathered}$
5	Parallel input (NPN)	-	
6	Parallel input (PNP)	\bullet	
E	EtherCAT	\bullet	\bullet
9	EtherNet/IPTM	\bullet	\bullet
P	PROFINET	-	\bullet
D	DeviceNet ${ }^{\text {® }}$	-	
L	IO-Link	-	\bullet
M	CC-Link	-	

Symbol	Type	Applicable interface
Nil	Without accessory	-
\mathbf{S}	Straight type communication plug connector	DeviceNet ${ }^{\circledR}$
\mathbf{T}	T-branch type communication plug connector	CC-Link Ver. 1.10
$\mathbf{1}$	I/O cable $(1.5 \mathrm{~m})$	Parallel input (NPN)
$\mathbf{3}$	I/O cable $(3 \mathrm{~m})$	
$\mathbf{5}$	I/O cable $(5 \mathrm{~m})$	

Symbol of axeres, Spececial specification

Symbol	Numberof axeses	Specification
$\mathbf{1}$	Single axis	Standard
F	Single axis	With STO Wub-function

8 Controller/Driver type*4

Nil	Without controller/driver	
1N	LECP1	NPN
1P	(Programless type)	PNP
AN	LECPA*5 (Pulse input type)	NPN
AP		PNP

(9 $1 / 0$ cable length ${ }^{*} 6$

$\mathbf{N i l}$	Without cable (Without communication plug connector)
$\mathbf{1}$	1.5 m
$\mathbf{3}$	$3 \mathrm{~m}^{* 7}$
$\mathbf{5}$	$5 \mathrm{~m}^{* 7}$

*1 Size: 10, 20 only
*2 Produced upon receipt of order (Robotic cable only)
*3 The standard cable should only be used on fixed parts. For use on moving parts, select the robotic cable. Refer to page 1092 if only the actuator cable is required.
*4 For details on controllers/drivers and compatible motors, refer to the compatible controllers/drivers on the next page.
*5 When pulse signals are open collector, order the current limiting resistor (LEC-PA-R- \square) on page1062 separately.
*6 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 1047 (For LECP1) or page 1062 (For LECPA) if an I/O cable is required.
*7 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector
*8 The DIN rail is not included. It must be ordered separately.
*9 Select "Nil" for anything other than DeviceNet ${ }^{\circledR}$, CC-Link, or parallel input.
Select "Nil," "S," or "T" for DeviceNet ${ }^{\circledR}$ or CC-Link.
Select "Nil," "1," "3," or "5" for parallel input.

\triangle Caution

[CE/UKCA-compliant products]

(1) EMC compliance was tested by combining the electric actuator LEH series and the controller LEC/JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.

[UL-compliant products (For the LEC series)]

When compliance with UL is required, the electric actuator and controller/ driver should be used with a UL1310 Class 2 power supply.

The actuator and controller/driver are sold as a package.
Confirm that the combination of the controller/driver and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for the model number. This number should match that of the controller/driver.
(2) Check that the Parallel I/O configuration matches (NPN or PNP).

* Refer to the Operation Manual for using the products. Please download it via our website: https://www.smcworld.com

LEHS Series

Incremental (Step Motor 24 VDC)

Compatible Controllers/Drivers

	Step data input type	Programless type	Pulse input type
Type			

Type	EtherCAT direct input type	EtherCAT direct input type with STO sub-function	EtherNet/IPTM direct input type	EtherNetIIPTM direct input type with STO sub-function	PROFINET direct input type	PROFINET direct input type with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input type	10-Link direct input type	10-Link direct input type with STO sub-function	CC-Link direct input type
Series	JXCE1	JXCEF	JXC91	JXC9F	JXCP1	JXCPF	JXCD1	JXCL1	JXCLF	JXCM1
Features	EtherCAT direct input	EtherCAT direct input with STO sub-function	EtherNet//PTM direct input	EtherNet/IPTM direct input with STO sub-function	PROFINET direct input	PROFINET direct input with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input	IO-Link direct input	IO-Link direct input with STO sub-function	CC-Link direct input
Compatible motor	Step motor (Servo/24 VDC)									
Max. number of step data	64 points									
Power supply voltage	24 VDC									
Reference page	1063									

Specifications

Model			LEHS10	LEHS20	LEHS32	LEHS40
	Open and close stroke/diameter [mm]		4	6	8	12
	Lead [mm]		$\begin{aligned} & 255 / 76 \\ & (3.355) \end{aligned}$	$\begin{aligned} & 235 / 56 \\ & (4.196) \end{aligned}$	$\begin{aligned} & 235 / 40 \\ & (5.875) \end{aligned}$	$\begin{aligned} & 235 / 40 \\ & (5.875) \end{aligned}$
	Gripping force$[\mathrm{N}]^{* 1 * 3}$	Basic	2.2 to 5.5	9 to 22	36 to 90	52 to 130
		Compact	1.4 to 3.5	7 to 17	-	-
	Open and close speed/ Pushing speed $[\mathrm{mm} / \mathrm{s}]^{* 2 * 3}$		$\begin{aligned} & 5 \text { to } 70 / \\ & 5 \text { to } 50 \end{aligned}$	5 to $80 /$ 5 to 50	$\begin{gathered} 5 \text { to } 100 / \\ 5 \text { to } 50 \end{gathered}$	$\begin{gathered} 5 \text { to } 120 / \\ 5 \text { to } 50 \end{gathered}$
	Drive method		Slide screw + Wedge cam			
	Repeated length measurement accuracy [mm] ${ }^{* 4}$		± 0.05			
	Finger backlash/radius [mm]*5		0.25 or less			
	Repeatability [mm]*6		± 0.02			
	Positioning repeatability/radius [mm]		± 0.05			
	Lost motion/radius [mm]*7		0.25 or less			
	Impact/Vibration resistance [m/s $\left.{ }^{2}\right]^{* 8}$		150/30			
	Max. operating frequency [C.P.M]		60			
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40			
	Operating humidity range [\%RH]		90 or less (No condensation)			
	Enclosure		IP40			
	Weight [g]	Basic	185	410	975	1265
		Compact	150	345	-	-
	Motor size		$\square 20$	$\square 28$	$\square 42$	
	Motor type		Step motor (Servo/24 VDC)			
	Encoder		Incremental			
	Power supply voltage [V]		24 VDC $\pm 10 \%$			
	Power [W]*9	Basic	Max. power 19	Max. power 51	Max. power 57	Max. power 61
		Compact	Max. power 14	Max. power 42	-	-

*1 Gripping force should be from 7 to 13 times the workpiece weight. Moving force should be 150% when releasing the workpiece. Gripping force accuracy should be $\pm 30 \%$ (F.S.) for LEHS10, $\pm 25 \%$ (F.S.) for LEHS20 and $\pm 20 \%$ (F.S.) for LEHS32/40. Gripping with heavy attachment and fast pushing speed, may not reach the product specification. In this case, decrease the weight and lower the pushing speed.
*2 Pushing speed should be set within the range during pushing (gripping) operations. Otherwise, it may cause a malfunction. The open/close speed and pushing speed are for both fingers. The speed for one finger is half this value.
$* 3$ The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
4 Repeated length measurement accuracy means dispersion (value on the controller monitor) when the workpiece is repeatedly held in the same position.
*5 There will be no influence of backlash during pushing (gripping) operations. Make the stroke longer for the amount of backlash when opening
6 Repeatability means the variation of the gripping position (workpiece position) when gripping operations are repeatedly performed by the same sequence for the same workpiece.

* A reference value for correcting errors in reciprocal operation which occur during positioning operations
*8 Impact resistance: No malfunction occurred when the gripper was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the gripper in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the gripper in the initial state.)
*9 Indicates the max. power during operation (including the controller) This value can be used for the selection of the power supply

How to Mount

a) Mounting A type
(when using the thread on the mounting plate)

b) Mounting B type
(when using the thread on the back of the body)

Incremental (Step Motor 24 VDC)

Construction

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Motor plate	Aluminum alloy	Anodized
$\mathbf{3}$	Guide ring	Aluminum alloy	
$\mathbf{4}$	Slide cam	Stainless steel	Heat treatment + Special treatment
$\mathbf{5}$	Slide bolt	Stainless steel	Heat treatment + Special treatment
$\mathbf{6}$	Finger	Carbon steel	Heat treatment + Special treatment
$\mathbf{7}$	End plate	Stainless steel	
$\mathbf{8}$	Step motor (Servo/24 VDC)		

Dimensions

LEHS10(L)K3-4

$[\mathrm{mm}]$		
Model	\mathbf{L}	$\mathbf{(L 1})$
LEHS10K3-4	89.1	(59.6)
LEHS10LK3-4	72.6	(43.1)

*1 This is the range within which the fingers can move when it returns to origin. Make sure that workpieces mounted on the fingers do not interfere with other workpieces or the facilities around the fingers.
*2 Secure the motor cable so that the cable is not repeatedly bent.

LEHS2O(L)K3-6

		$[\mathrm{mm}]$
Model	\mathbf{L}	$\mathbf{(L 1})$
LEHS2OK3-6	98.8	(61.8)
LEHS20LK3-6	84.8	(47.8)

*1 This is the range within which the fingers can move when it returns to origin. Make sure that workpieces mounted on the fingers do not interfere with other workpieces or the facilities around the fingers
*2 Secure the motor cable so that the cable is not repeatedly bent.

LEHS Series

Incremental (Step Motor 24 VDC)

Dimensions

LEHS32K3-8

Design / Selection

. Warning

1. Keep the specified gripping point.

If the specified gripping range is exceeded, excessive moment is applied to the sliding part of the finger, which may have an adverse affect on the service life of the product.

L: Gripping point H: Overhang

O "L" and "H" are appropriate.

Gripping position

\times " L " is too long. $\quad \times$ " H " is too long.
2. Design the attachment to be lightweight and short.

A long and heavy attachment will increase inertial force when the product is opened or closed, which causes play on the finger. Even if the gripping point of the attachment is within a specified range, design it to be short and lightweight as possible.
For a long or large workpiece, select a model of a larger size or use two or more grippers together.
3. Provide a runoff space for attachment when a workpiece is extremely thin or small.
Without a runoff space, the product cannot perform stable gripping, and the displacement of a workpiece or gripping failure

4. Select a model that allows for gripping force in relation to the workpiece weight, as appropriate.
The selection of an inappropriate model may result in the dropping of a workpiece. Gripping force should be from 10 to 20 times (LEHZ, LEHF) or 7 to 13 times (LEHS) of the workpiece weight.
Gripping Force Accuracy
LEHZ(J)10(L) LEHZ(J)16(L) LEHZ(J)20(L) LEHZ(J)25(L) LEHZ32 LEHZ40

$\pm 30 \%$ (F.S.)	$\pm 25 \%$ (F.S.)	$\pm 20 \%$ (F.S.)	
LEHF10	LEHF20	LEHF32	LEHF40
$\pm 30 \%$ (F.S.)	$\pm 25 \%$ (F.S.)	$\pm 20 \%$ (F.S.)	
LEHS10(L)	LEHS20(L)	LEHS32	LEHS40
$\pm 30 \%$ (F.S.)	$\pm 25 \%$ (F.S.)	$\pm 20 \%$ (F.S.)	

5. Do not use the product in applications where excessive external force (including vibration) or impact force is applied to it.
It may lead to breakage or galling, which may result in malfunction. Do not apply impact and vibration outside of the specifications.
6. Select a model that allows for open and close width relative to a workpiece.
The selection of an inappropriate model may result in the gripping at unexpected positions due to variable open and close width of the product and the diameter of a workpiece the product can handle. It is also necessary to make a larger stroke to overcome backlash created when the product will open after gripping.

Mounting

© Warning

1. Do not drop or hit the gripper to avoid scratching and denting the mounting surfaces.
Even slight deformation may result in the deterioration of accuracy and operation failure.
2. When mounting the attachment, tighten the mounting screws within the specified torque range.
Tightening the screws with a higher torque than recommended may result in a malfunction, while tightening with a lower torque may result in the displacement of the mounting position or, in extreme conditions, the actuator could become detached from its mounting position.

Mounting of Attachment to Finger

The attachment should be mounted with the torque specified in the following table by screwing the screw into the finger mounting female thread and hole.

LEHZ Series

Model	Screw size	Max. tightening torque [$\mathrm{N} \cdot \mathrm{m}$]
LEHZ(J)10(L)	$\mathrm{M} 2.5 \times 0.45$	0.3
LEHZ(J)16(L)	$\mathrm{M} 3 \times 0.5$	0.9
LEHZ(J)20(L)	$\mathrm{M} 4 \times 0.7$	1.4
LEHZ(J)25(L)	$\mathrm{M} 5 \times 0.8$	3.0
LEHZ32	$\mathrm{M} 6 \times 1$	5.0
LEHZ40	$\mathrm{M} 8 \times 1.25$	12.0

LEHF Series

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$
LEHF10	$\mathrm{M} 2.5 \times 0.45$	0.3
LEHF20	$\mathrm{M} 3 \times 0.5$	0.9
LEHF32	$\mathrm{M} 4 \times 0.7$	1.4
LEHF40	$\mathrm{M} 4 \times 0.7$	1.4

LEHS Series

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$
LEHS10(L)	$\mathrm{M} 3 \times 0.5$	0.9
LEHS20(L)	$\mathrm{M} 3 \times 0.5$	0.9
LEHS32	$\mathrm{M} 4 \times 0.7$	1.4
LEHS40	$\mathrm{M} 5 \times 0.8$	3.0

LEH Series

\triangleSpecific Product Precautions 2
Be sure to read this before handling the products. Refer to page 1351 for safety instructions and pages 1352 to 1357 for electric actuator precautions.

Mounting

Mounting of Electric Gripper, LEHZ/LEHZJ Series
When using the thread on the side of the body

Attachment
Finger
When using the thread on the mounting plate

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$
LEHZ(J)10(L)	$\mathrm{M} 3 \times 0.5$	0.9
LEHZ(J)16(L)	$\mathrm{M} 3 \times 0.5$	0.9
LEHZ(J)20(L)	$\mathrm{M} 4 \times 0.7$	1.4
LEHZ(J)25(L)	$\mathrm{M} 5 \times 0.8$	3.0
LEHZ32	$\mathrm{M} 5 \times 0.8$	3.0
LEHZ40	$\mathrm{M} 6 \times 1$	5.0

When using the thread on the back of the body

Model	Screw size	Max. tightening torque [N-m]	Max. screw-in depth $\mathrm{L}[\mathrm{mm}]$	
LEHZ(J)10(L)	$\mathrm{M} 4 \times 0.7$	1.4	6	
LEHZ(J)16(L)	$\mathrm{M} 4 \times 0.7$	1.4	6	
LEHZ(J)20(L)	$\mathrm{M} 5 \times 0.8$	3.0	8	
LEHZ(J)25(L)	$\mathrm{M} 6 \times 1$	5.0	10	
LEHZ32	$\mathrm{M} 6 \times 1$	5.0	10	
	LEHZ40	$\mathrm{M} 8 \times 1.25$	12.0	14

Mounting of Electric Gripper, LEHF Series

When using the thread on the body

When using the thread on the mounting plate

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$
LEHF10	$\mathrm{M} 4 \times 0.7$	1.4
LEHF20	$\mathrm{M} 5 \times 0.8$	3.0
LEHF32	$\mathrm{M} 6 \times 1$	5.0
LEHF40	$\mathrm{M} 6 \times 1$	5.0

When using the thread on the back of the body

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max. screw-in depth $\mathrm{L}[\mathrm{mm}]$
LEHF10	$\mathrm{M} 5 \times 0.8$	3.0	10
LEHF20	$\mathrm{M} 6 \times 1$	5.0	12
LEHF32	$\mathrm{M} 8 \times 1.25$	12.0	16
LEHF40	$\mathrm{M} 8 \times 1.25$	12.0	16

Mounting of Electric Gripper, LEHS Series

When using the thread on the mounting plate

When using the thread on the back of the body

	Model	Screw size	Max. tightening torque [N.m]	Max. screw-in depth $\mathrm{L}[\mathrm{mm}]$
	LEHS10(L)	$\mathrm{M} 4 \times 0.7$	1.4	6
LEHS20(L)	$\mathrm{M} 6 \times 1$	5.0	10	
	LEHS32	$\mathrm{M} 8 \times 1.25$	12.0	14
	LEHS40	$\mathrm{M} 8 \times 1.25$	12.0	14

Mounting

\triangle Warning

3. When mounting the electric gripper, tighten the mounting screws within the specified torque range.
Tightening the screws with a higher torque than recommended may result in a malfunction, while tightening with a lower torque may result in the displacement of the mounting position or, in extreme conditions, the actuator could become detached from its mounting position.
4. When fixing the attachment to the finger, avoid applying excessive torque to the finger.
Play or deteriorated accuracy can result.
5. The mounting face has holes and slots for positioning. Use them for accurate positioning of the electric gripper if required.
6. When a workpiece is to be removed when it is not energized, open or close the finger manually or remove the attachment beforehand.
When it is necessary to operate the product by the manual override screws, check the position of the manual override screws of the product, and leave necessary space. Do not apply excessive torque to the manual override screws. This may lead to damage and malfunction.
7. When gripping a workpiece, keep a gap in the horizontal direction to prevent the load from concentrating on one finger, to allow for workpiece misalignment.
For the same purpose, when moving a workpiece for alignment by the product, minimize the friction resistance created by the movement of the workpiece. The finger can be displaced, play or breakage
8. Perform adjustment and confirmation to ensure there is no external force applied to the finger.
If the finger is subject to repetitive lateral load or impact load, it can cause play or breakage and the lead screw can get stuck, which results in operation failure. Allow a clearance to prevent the workpiece or the attachment from hitting gripper product at the end of the stroke.
1) Stroke end when fingers are open

2) Stroke end when gripper is moving

3) When turning over

9. Adjust the gripping point so that an excessive force will not be applied to the fingers when inserting a workpiece. In particular, during a trial run, operate the product manually or at a low speed and check that the safety is assured without impact.

Handling

\triangle Caution

1. The parameters of the stroke and the open/close speed are for both fingers.
The stroke and the open/close speed for one finger is half a set parameter.
2. When gripping a workpiece by the product, be sure to set to the pushing operation.
Also, do not allow a workpiece to collide with the finger or attachment during the positioning operation or within the positioning range.
Otherwise, the lead screw can get caught and result in a malfunction. However, if the workpiece cannot be gripped in pushing operation (such as a plastically deformed workpiece, rubber component, etc.), you can grip it in positioning operation with consideration to the elastic force of the workpiece. In this case, keep the driving speed for impact specified in item 3 on page 603.
When the operation is interrupted by a stop or temporary stop, and a pushing operation instruction is output just after operation is restarted, the operating direction will vary depending on the start position.

Handling

\triangle Caution

3. Keep the following driving speed range for pushing operations.
-LEHZ/LEHZJ: 5 to $50 \mathrm{~mm} / \mathrm{s} \cdot$ LEHF10: 5 to $20 \mathrm{~mm} / \mathrm{s}$
-LEHF20/32/40: 5 to $30 \mathrm{~mm} / \mathrm{s}$ •LEHS: 5 to $50 \mathrm{~mm} / \mathrm{s}$
Operation at the speed outside of the range may get the lead screw caught and result in a malfunction.
4. There is no backlash effect in pushing operations.

The return to origin is done by pushing operations.
The finger position can be displaced by the effect of the backlash during the positioning operations.
Take the backlash into consideration when setting the position.
5. Do not change the setting of energy saving mode.

When pushing (gripping) operations are continued, the heat generated by the motor may result in a malfunction.
This is due to the self-lock mechanism in the lead screw, which makes the product keep the gripping force. To save the energy in this situation where the product is to be standby or continue to grip for extended periods of time, the product will be controlled to reduce current consumption (to 40\% automatically after it has gripped a workpiece once). If there is the reduction of gripping force seen in the product after a workpiece has been gripped and deformed over certain amount of time, contact SMC separately.

6. INP output signal

1) Positioning operation

When the product comes within the set range by step data [In position], the INP output signal will turn ON.
Initial value: Set to [0.50] or higher.
2) Pushing operation

When the effective force exceeds the step data [Trigger LV], the INP output signal will turn ON.
Use the product within the specified range of [Pushing force] and [Trigger LV].
a) To ensure that the gripper holds the workpiece with the set [Pushing force], it is recommended that the [Trigger LV] be set to the same value as the [Pushing force].
b) When the [Pushing force] and [Trigger LV] are set below the specified range, the INP output signal will turn ON from the pushing start position.
c) The INP output signal is turned ON when pushing in the stroke end of an electric gripper even if workpiece is not held.
<INP output signal in the controller version>

- SV1.0* or more

Although the product automatically switches to the energy saving mode (reduced current) after pushing operations are completed, the INP output signal remains ON.

- SVO.6* or less
a. When [Trigger LV] is set to 40% (when the value is the same as the energy saving mode)
Although the product automatically switches to the energy saving mode (reduced current) after pushing operations are completed, the INP output signal remains ON.
b. When [Trigger LV] is set higher than 40%

The product is turned ON after pushing operations are completed, but INP output signal will turn OFF when current consumption is reduced automatically in energy saving mode.

Label position for controller version
<Pushing force and trigger level range>
LEHZ Series

Motor size	Pushing speed [mm/s]	Pushing force (Setting input value)
Basic	41 to 50	50% to 100%
	5 to 40	40% to 100%
Compact	31 to 50	70% to 100%
	21 to 30	50% to 100%
	5 to 20	40% to 100%

LEHZJ Series

Motor size	Body size	Pushing speed [mm/s]	Pushing force (Setting input value)
Basic	10, 16	41 to 50	50\% to 100\%
	20, 25	5 to 40	40\% to 100\%
Compact	10L, 16L	21 to 50	80\% to 100\%
		11 to 20	60\% to 100\%
		5 to 10	50\% to 100\%
	20L, 25L	31 to 50	70\% to 100%
		21 to 30	50\% to 100\%
		5 to 20	40\% to 100\%

LEHF Series

Pushing speed $[\mathrm{mm} / \mathrm{s}]$	Pushing force (Setting input value)
21 to 30	50% to 100%
5 to 20	40% to 100%

LEHS Series

Motor size	Pushing speed [mm/s]	Pushing force (Setting input value)
Basic	41 to 50	50% to 100%
	5 to 40	40% to 100%
Compact	31 to 50	80% to 100%
	11 to 30	60% to 100%
	5 to 10	40% to 100%

7. When releasing a workpiece, set the moving force to 150%.
If the torque is too small when a workpiece is gripped in pushing operation, the product can have galling and become unable to release the workpiece.
8. If the finger has galling due to operational setting error, etc., open and close the finger manually.
When it is necessary to operate the product by the manual override screws, check the position of the manual override screws of the product, and leave necessary space. Do not apply excessive torque to the manual override screws. This may lead to damage and malfunction.

<LEHZJ series>

In the case of a gripper with dust covers, remove the encoder dust cover before operating the manual override.
Refit the encoder dust cover after using the manual override.

Handling

\triangle Caution

9. Self-lock mechanism

The product keeps a gripping force due to the self-lock mechanism in the lead screw. Also, it will not operate in the opposite direction even when external force is applied during gripping a workpiece.
<Type of Stops, Cautions>

1) All the power supplies to the controller are shut off.

When the power supply is turned on to restart operation, the controller will be initialized, and the product can drop a workpiece due to a motor magnetic pole detective operation. (It means that there are finger motions of partial strokes by the phase detection of motor after power supply is turned on.) Remove the workpiece before restarting operation.
2) "EMG (stop)" of the CN1 of the controller is shut off. When using the stop switch on the teaching box;
a) In case both of [SVRE] and [SETON] are ON before stop, [SVRE]: OFF / [SETON]: ON
b) How to restart operation In this situation, since [SVRE] is on before stop, [SVRE] will be turned on automatically when stop is released, and operation can be restarted after that. It is not necessary to remove a workpiece beforehand because a motor magnetic pole detective operation will not occur.
c) Cautions

An alarm can take place when operation is restarted from stop. Check that [SVRE] is turned on after the release of stop and restart operation.
3) "M24V (motor driving power supply)" of the CN1 of the controller is shut off.
a) There will be no change in output conditions due to stop.
b) How to restart operation

In this situation, operation can be restarted after stop is released. It is not necessary to remove a workpiece beforehand because a motor magnetic pole detective operation will not occur.
c) Cautions

An alarm can take place when stop is activated during operation or operation is restarted from stop.

10. Return to origin

1) It is recommended to set the directions of return to origin and workpiece gripping in the same direction.
If they are set opposite, there can be backlash, which worsens the measurement accuracy significantly.
2) If the direction of return to origin is set to CW (Internal gripping);
If the return to origin is performed with the product only, there can be significant deviation between different actuators. Use a workpiece to set return to origin.
3) If the return to origin is performed by using a workpiece; The stroke (operation range) will be shortened. Recheck the value of step data.
4) If basic parameters (Origin offset) are used;

When the return to origin is set with [Origin offset], it is necessary to change the current position of the product. Recheck the value of step data.

Handling

\triangle Caution

11. For pushing (gripping) operations, set the product to a position at least 0.5 mm away from a workpiece. (This position is referred to as the pushing start position.)
If the product is set to the same position as a workpiece, the following alarms may be generated and operation may become unstable.
a. "Posn failed"

The product cannot reach the pushing start position due to variations in the width of workpieces.
b. "Pushing ALM"

The product is pushed back from the pushing start position after starting to push.
c. "Err overflow"

The displacement at the pushing start position exceeds the specified range.
12. When mounting the product, secure a bending diameter of 40 mm or longer for the motor cable.
13. Finite orbit type guide is used in the actuator finger part. By using this, when there are inertial force which cause by movements or rotation to the actuator, steel ball will move to one side and this will cause a large resistance and degrade the accuracy. When there are inertial force which cause by movements or rotation to the actuator, operate the finger to full stroke.
Especially in long stroke type, the accuracy of the finger may degrade.

Maintenance

\triangle Danger

1. When the product is to be removed, check it has not been gripping a workpiece.
There is a risk of dropping a workpiece.

\triangle Caution

1. The dust cover on the gripper finger (LEHZJ series only) is a consumable item, replace the dust cover as and when it is necessary.
Otherwise, machining chips and fine particles may get into the product from the outside, resulting in a malfunction.
The dust cover on the gripper finger can be damaged if the finger attachment or the workpiece comes into contact with the dust cover during operation.

LEH Series

Battery-less Absolute Encoder Type
Specific Product Precautions
Be sure to read this before handling the products. Refer to page 1351 for safety instructions and pages 1352 to 1357 for electric actuator precautions.

Handling
 \triangle Caution
 1. Absolute encoder ID mismatch error at the first connection

In the following cases, an "ID mismatch error" alarm occurs after the power is turned ON. Perform a return to origin operation after resetting the alarm before use.

- When an electric actuator is connected and the power is turned ON for the first time after purchase* ${ }^{* 1}$
- When the actuator or motor is replaced
- When the controller is replaced
*1 If you have purchased an electric actuator and controller with the set part number, the pairing may have already been completed and the alarm may not be generated.
"ID mismatch error"
Operation is enabled by matching the encoder ID on the electric actuator side with the ID registered in the controller. This alarm occurs when the encoder ID is different from the registered contents of the controller. By resetting this alarm, the encoder ID is registered (paired) to the controller again.

When a controller is changed after pairing is completed						
	Encoder ID no. (* Numbers below are examples.)					
Actuator	17623	17623	17623	17623		
Controller	17623	17699	17699	17623		
ID mismatch error occurred?	No	Yes	Error reset \Rightarrow No			

2. In environments where strong magnetic fields are present, use may be limited.
A magnetic sensor is used in the encoder. Therefore, if the actuator motor is used in an environment where strong magnetic fields are present, malfunction or failure may occur. Do not expose the actuator motor to magnetic fields with a magnetic flux density of 1 mT or more.
When installing an electric actuator and an air cylinder with an auto switch (ex. CDQ2 series) or multiple electric actuators side by side, maintain a space of 40 mm or more around the motor. Refer to the construction drawing of the actuator motor.
3. The connector size of the motor cable is different from that of the electric actuator with an incremental encoder.
The motor cable connector of an electric actuator with a battery-less absolute encoder is different from that of an electric actuator with an incremental encoder. As the connector cover dimensions are different, take the dimensions below into consideration during the design process.

Battery-less absolute encoder connector cover dimensions

[^0]: * - Even in cases where the coefficient of friction is greater than $\mu=0.2$, for reasons of safety, select a gripping force which is at least 10 to 20 times greater than the workpiece weight, as recommended by SMC
 - If high acceleration or impact forces are encountered during motion, a further margin should be considered.

[^1]: * The dust cover is a consumable part. Please replace as necessary.

[^2]: * Pushing force is one of the values of step data that is input into the controller.

[^3]: * Pushing force is one of the values of step data that is input into the controller.

